Статья
Can triconcepts become triclusters?
Two novel approaches to triclustering of three-way binary data are proposed. Tricluster is defined as a dense subset of a ternary relation Y defined on sets of objects, attributes, and conditions, or, equivalently, as a dense submatrix of the adjacency matrix of the ternary relation Y. This definition is a scalable relaxation of the notion of triconcept in Triadic Concept Analysis, whereas each triconcept of the initial data-set is contained in a certain tricluster. This approach generalizes the one previously introduced for concept-based biclustering. We also propose a hierarchical spectral triclustering algorithm for mining dense submatrices of the adjacency matrix of the initial ternary relation Y. Finally, we describe some applications of the proposed techniques, compare proposed approaches and study their performance in a series of experiments with real data-sets.
Formal Concept Analysis (FCA) is a mathematically well-founded theory aimed at data analysis and classication, introduced and detailed in the book of Bernhard Ganter and Rudolf Wille, \Formal Concept Analysis", Springer 1999. The area came into being in the early 1980s and has since then spawned over 10000 scientic publications and a variety of practically deployed tools. FCA allows one to build from a data table with objects in rows and attributes in columns a taxonomic data structure called concept lattice, which can be used for many purposes, especially for Knowledge Discovery and Information Retrieval. The \Formal Concept Analysis Meets Information Retrieval" (FCAIR) workshop collocated with the 35th European Conference on Information Retrieval (ECIR 2013) was intended, on the one hand, to attract researchers from FCA community to a broad discussion of FCA-based research on information retrieval, and, on the other hand, to promote ideas, models, and methods of FCA in the community of Information Retrieval. This volume contains 11 contributions to FCAIR workshop (including 3 abstracts for invited talks and tutorial) held in Moscow, on March 24, 2013. All submissions were assessed by at least two reviewers from the program committee of the workshop to which we express our gratitude. We would also like to thank the co-organizers and sponsors of the FCAIR workshop: Russian Foundation for Basic Research, National Research University Higher School of Economics, and Yandex.
В данной статье предлагаются два новых метода анализа данных социальных сетей. В частности, анализируются данные социальной сети ВКонтакте. Используя бикластеризацию, извлекаются группы пользователей со схожими интересами и сообщества пользователей, состоящих в схожих группах. С помощью трикластеризации интересы пользователей используются в качестве тегов для описания групп ВКонтакте. После данного процесса тегирования возможно рекомендовать конкретным пользователям релевантные группы или новых друзей, имеющих схожие предпочтения, из интересных групп. Приводятся предварительные результаты и объясняются дальнейшие приложения данных методов в случае больших данных.
В работе комбинируются подходы на основе би- и трикластризации для анализа данных онлайн социальной сети ВКонтакте. Используя бикластеризацию, извлекаются группы пользователей со схожими интересами и сообщества пользователей, состоящих в схожих группах. С помощью трикластеризации интересы пользователей используются в качестве тегов для описания групп ВКонтакте. После данного процесса тегирования возможно рекомендовать конкретным пользователям релевантные группы или новых друзей, имеющих схожие предпочтения, из интересных групп. Приводятся предварительные результаты и объясняются дальнейшие приложения данных методов в случае больших данных.
We combine bi- and triclustering to analyse data collected from the Russian online social network Vkontakte. Using biclustering we extract groups of users with similar interests and find communities of users which belong to similar groups. With triclustering we reveal users' interests as tags and use them to describe Vkontakte groups. After this social tagging process we can recommend to a particular user relevant groups to join or new friends from interesting groups which have a similar taste. We present some preliminary results and explain how we are going to apply these methods on massive data repositories.
Рассматриваются пространства функций на окружности, естественным образом возникающие в гармоническом анализе, и операторы замены переменной (суперпозиции с гомеоморфизмами окружности) в этих пространствах. В работе рассматривается вопрос о том, какие функции обладают тем свойством, что любая их суперпозиция с гомеоморфизмом принадлежит заданному пространству. Рассмотрен также многомерный случай.
Рассматриваются пространства функций на m -мерном торе, преобразование Фурье которых p -суммируемо. Получены оценки норм экспонент деформированных посреством C1 -гладкой фазовой функции. Результаты являются распространением на многомерный случай оценок, полученных автором ранее для одномерного случая в работе «Количественные оценки в теоремах типа теоремы Берлинга--Хелсона» Математический сборник, 201:12 (2010), 103-130.
Рассматриваются пространства функций на окружности таких, что их преобразование Фурье является p-суммируемым. Получены оценки норм экспонент, деформированных посредством C1 -гладкой фазовой функции.
Труды содержат доклады, представленные учеными из России, Украины, Белоруссии, Казахстана, Эстонии, Узбекистана, Германии, Польши, посвященные актуальным проблемам радиационной физики твердого тела (влияние радиации на физико-химические свойства и структуру металлических, полупроводниковых и диэлектрических материалов, влияние факторов космического пространства на свойства конструкционных и функциональных материалов и покрытий космических аппаратов, радиационно-технологические методы получения материалов, в частности наноматериалов, модифицирования и обработки материалов с целью улучшения их эксплуатационных свойств, создание и получение экологически чистых материалов с низкой наведенной радиоактивностью и др.).
Труды содержат доклады, представленные специалистами из России, Украины, Белорусии, Казахстана, Узбекистана, Германии, Великобритании, Польши по направлениям:«Радиационная физика металлов», «Радиационная физика неметаллических материалов», «Физические основы радиационной технологии» и посвященные разнообразным проблемам радиационной физики твердого тела (процессы прохождения заряженных и нейтральных частиц, рентгеновского и гамма-излучений через вещество, электрон-атомные, атом-атомные, ион-атомные и др. столкновения в твердых телах, ориентационные явления при взаимодействии высокоэнергетических частиц с твердым телом, радиационно-индуцированные и радиационно-стимулированные явления в твердых телах и др.).
Настоящая книга представляет собой своеобразный расширенный учебник по математической статистике. Данный учебник не ограничен рамками учебного стандарта или вузовской программы --- он предназначен всем, кто интересуется математикой вообще и, в частности, хочет узнать, что такое современная математическая статистика, какие задачи и какими методами она решает, какие результаты в ней уже накоплены, какие проблемы в ней сегодня актуальны; наконец, каковы ее истоки, какой путь она прошла и какие ученые были ее творцами. По замыслу авторов, книга простым и доступным языком рассказывает о математической статистике и одновременно обучает ей. Вся теория объясняется и иллюстрируется на интересных и тщательно подобранных примерах. Книга может служить и задачником, так как содержит большой список упражнений для самостоятельного решения, а также справочным пособием по математической статистике, а в некоторых аспектах --- и по теории вероятностей.
Книга будет интересна преподавателям, аспирантам и студентам естественных и технических вузов, в которых изучается математическая статистика, научным работникам, использующим в своей деятельности методы математической статистики, а также самому широкому кругу любителей математики.
В данной работе рассматривается пятое уравнение Пенлеве, которое имеет 4 комплексных параметра α, β, γ, δ. Методами степенной геометрии ищутся асимптотические разложения его решений при x → ∞. При α≠0 найдено 10 степенных разложений с двумя экспоненциальными добавками каждое. Шесть из них - по целым степеням x (они были известны), и четыре по полуцелым (они новые). При α=0 найдено 4 однопараметрических семейства экспоненциальных асимптотик y(x) и 3 однопараметрических семейства сложных разложений x=x(y). Все экспоненциальные добавки, экспоненциальные асимптотики и сложные разложения найдены впервые. Также уточнена техника вычисления экспоненциальных добавок.
Эта публикация представляет собой сборник отдельных статей "Третьей Международной конференции по динамике информационных систем», которая состоялась в университете Флориды, 16-18 февраля 2011 года. Цель данной конференции заключалась в том, чтобы собрать вместе ученых и инженеров из промышленности, правительства и научных кругов, чтобы они смогли обменяться новыми открытиями и результатами в вопросах, имеющих отношение к теории и практике динамики информационных систем. Динамика информационных систем: математическое открытие представляет собой современное исследование и предназначается студентам – аспирантам и исследователям, которые интересуются самыми последними открытиями в информационной теории и динамичных системах. Ученые других дисциплин могут также получить пользу от применения новых разработок в своих областях исследований.
Российские ученые разработали модельный суперкомплекс для долгосрочного прогнозирования развития мировой экономики
Статьи данного сборника написаны на основе докладов, сделанных в 2011 г. на социологическом факультете МГУ им. М.В. Ломоносова на заседании XIV Междисциплинарного ежегодного научного семинара "Математическое моделирование социальных процессов" им. Героя Социалистического труда академика А.А. Самарского.
Издание предназначено для научных сотрудников, преподавателей, учащихся вузов и научных учреждений РАН, интересующихся проблемами, разработкой и внедрением методологии математического моделирования социальных процессов.
Получена форма несмещенной оценки коэффициента детерминации для линейного уравнения регрессии, вычисляемая по выборочным данным из многомерного нормального распределения. Эту оценку предлагается применять как альтернативный критерий выбора факторов в регрессии.