### Article

## Can triconcepts become triclusters?

A novel approach to triclustering of a three-way binary data is proposed. Tricluster is defined in terms of Triadic Formal Concept Analysis as a dense triset of a binary relation Y , describing relationship between objects, attributes and conditions. This definition is a relaxation of a triconcept notion and makes it possible to find all triclusters and triconcepts contained in triclusters of large datasets. This approach generalizes the similar study of concept-based biclustering.

There is a lot of usefulness measures of patterns in data mining. This paper is focused on the measures used in Formal Concept Analysis (FCA). In particular, concept stability is a popular relevancy measure in FCA. Experimental results of this paper show that high stability of a pattern in a given dataset derived from the general population suggests that the stability of that pattern is high in another dataset derived from the same population. At the second part of the paper, a new estimate of stability is introduced and studied. It es performance is evaluated experimentally. And it is shown that it is more efficient.

This proceedings publication is a compilation of selected contributions from the “Third International Conference on the Dynamics of Information Systems” which took place at the University of Florida, Gainesville, February 16–18, 2011. The purpose of this conference was to bring together scientists and engineers from industry, government, and academia in order to exchange new discoveries and results in a broad range of topics relevant to the theory and practice of dynamics of information systems. Dynamics of Information Systems: Mathematical Foundation presents state-of-the art research and is intended for graduate students and researchers interested in some of the most recent discoveries in information theory and dynamical systems. Scientists in other disciplines may also benefit from the applications of new developments to their own area of study.

Formal Concept Analysis (FCA) is a mathematically well-founded theory aimed at data analysis and classication, introduced and detailed in the book of Bernhard Ganter and Rudolf Wille, \Formal Concept Analysis", Springer 1999. The area came into being in the early 1980s and has since then spawned over 10000 scientic publications and a variety of practically deployed tools. FCA allows one to build from a data table with objects in rows and attributes in columns a taxonomic data structure called concept lattice, which can be used for many purposes, especially for Knowledge Discovery and Information Retrieval. The \Formal Concept Analysis Meets Information Retrieval" (FCAIR) workshop collocated with the 35th European Conference on Information Retrieval (ECIR 2013) was intended, on the one hand, to attract researchers from FCA community to a broad discussion of FCA-based research on information retrieval, and, on the other hand, to promote ideas, models, and methods of FCA in the community of Information Retrieval. This volume contains 11 contributions to FCAIR workshop (including 3 abstracts for invited talks and tutorial) held in Moscow, on March 24, 2013. All submissions were assessed by at least two reviewers from the program committee of the workshop to which we express our gratitude. We would also like to thank the co-organizers and sponsors of the FCAIR workshop: Russian Foundation for Basic Research, National Research University Higher School of Economics, and Yandex.

In this paper we propose two novel methods for analyzing data collected from online social networks. In particular we will do analyses on Vkontake data (Russian online social network). Using biclustering we extract groups of users with similar interests and find communities of users which belong to similar groups. With triclustering we reveal users’ interests as tags and use them to describe Vkontakte groups. After this social tagging process we can recommend to a particular user relevant groups to join or new friends from interesting groups which have a similar taste. We present some preliminary results and explain how we are going to apply these methods on massive data repositories.

We combine bi- and triclustering to analyse data collected from the Russian online social network Vkontakte. Using biclustering we extract groups of users with similar interests and find communities of users which belong to similar groups. With triclustering we reveal users' interests as tags and use them to describe Vkontakte groups. After this social tagging process we can recommend to a particular user relevant groups to join or new friends from interesting groups which have a similar taste. We present some preliminary results and explain how we are going to apply these methods on massive data repositories.

Relationships between proto-fuzzy concepts, crisply generated fuzzy concepts, and pattern structures are considered. It is shown that proto-fuzzy concepts are closely related to crisply generated fuzzy concepts in the sense that the mappings involved in the definitions coincide for crisp subsets of attributes. Moreover, a proto-fuzzy concept determines a crisp subset of attributes, which generates a (crisply generated) fuzzy concept. However, the reverse is true only in part: given a crisp subset of attributes, one can find a proto-fuzzy concept whose intent includes (but not necessarily coincides with) the given subset of attributes. Interval pattern concepts are shown to be related to crisply generated formal concepts. In particular, every crisply closed subset of objects is an extent of an interval pattern concept. Also, we establish some properties of the collection of formal concepts for a given fuzzy context.

We combine bi- and triclustering to analyse data collected from the Russian online social network Vkontakte. Using biclustering we extract groups of users with similar interests and find communities of users which belong to similar groups. With triclustering we reveal users' interests as tags and use them to describe Vkontakte groups. After this social tagging process we can recommend to a particular user relevant groups to join or new friends from interesting groups which have a similar taste. We present some preliminary results and explain how we are going to apply these methods on massive data repositories.

A form for an unbiased estimate of the coefficient of determination of a linear regression model is obtained. It is calculated by using a sample from a multivariate normal distribution. This estimate is proposed as an alternative criterion for a choice of regression factors.