• A
  • A
  • A
  • АБB
  • АБB
  • АБB
  • А
  • А
  • А
  • А
  • А
Обычная версия сайта

Статья

Соболевская регулярность транспортировки вероятностных мер и транспортные неравенства

В работе изучаются соболевские априорные оценки для оптимальной транспортировки $T = \nabla \Phi$ вероятностных мер $\mu=e^{-V} \ dx$ и $\nu=e^{-W} \ dx$ на $\R^d$.

В предположении равномерной выпуклости потенциала $W$ в работе доказано, что величина $\int \| D^2 \Phi\|^2_{HS} \ d\mu$, где $\|\cdot\|_{HS}$ --- норма Гильберта-Шмидта,

ограничена информацией Фишера меры $\mu$.

Помимо этого доказаны близкие оценки для $L^p(\mu)$-нормы $\|D^2 \Phi\|$ и получены $L^p$-обобщения известной теоремы Каффарелли о сжатии.

Установлены соотношения между результатами настоящей статьи и транспортным неравенством Талаграна.

Также доказаны не зависящие от размерности версии данного неравенства для информации

Фишера относительно гауссовских мер.