Статья
Construction of global-in-time solutions to Kolmogorov-Feller pseudodifferential equations with a small parameter using characteristics
Используя идею Маделунга мы строим глобальные по времени решения уравнения переноса отвечающие асимптотическим решениям уравнения Колмогорова-Феллера, описывающего процесс с диффузией, скпотенциалом и скачками. Для построения решения мы используем конструкцию решения уравнения неразрывности в разрывном поле скоростей. Также обсуждается свзь с конструкцией В.П.Маслова.
В работе проведено численное иссле- дование динамики пленки поверхностно - активных веществ в поле топографически захваченных длинных волн над цилиндрическим шельфом. В качестве осно- вы моделирования используется уравнение баланса поверхностной концентрации. Рассматривается дина- мика примеси в рамках модели адвекции - диффузии - релаксации. Проведено сравнение для различных моделей шельфа: «бесконечный откос», «шельф - сту- пенька», вогнутый экспоненциальный шельф. Уста- новлено, что поперечный рельеф дна существенно не влияет на геометрию распределения пленки, а оказы- вает влияние на количественные параметры концент- рации. Исследовано влияние номера моды на уровень концентрации для различных моделей шельфа. С по- вышением номера моды увеличиваются экстремумы отклонения концентрации от равновесного уровня
Предложена полуфеноменологическая модель процессов переноса под действием интенсивных источников энергии. Для объяснения наблюдаемых экспериментально отклонений линейной реакции системы на внешнее возмущение в процессах переноса, возникающих под действием интенсивных потоков энергии, предложено учесть влияние инерции среды. Полуфеноменологическая модель процессов сведена к системе с двумя базисными состояниями, для решения которой использованы методы, разработанные в теории микрообъектов. Показано, что инерция среды обусловлена конечным временем установления равновесия между базисными состояниями.
This classic survey considers passive scalar and vector transport processes in a random nonstationary medium, which are described by linear parabolic equations. Integration over random paths is used, along with the asymptotic behavior of the product of a large number of independent identically distributed random matrices. The most interesting effect is the appearance of concentrated structures (intermittency) of a smooth initial distribution of the transported quantity. The occurrence of intermittent distributions in the linear problem is due to the fact that the coefficients of the transport equation are stochastic. The intermittency shows itself in the rates of exponential growth of the successive moments (Lyapunov exponents) as the moment number increases. Moment equations are obtained for the scalar and vector, and are used to study temperature evolution and magnetic-field generation in a random fluid flow. These equations are differential in a medium with short time correlations and integral in the general case. The range of application of the diffusion description is analyzed. The behavior of the diffusion coefficients in the case of time reversal is examined. The properties of an individual realization of a scalar and vector are also explained, and a dynamo theorem is given on the exponential growth of the magnetic field in a random flow with renewal.
Настоящая книга представляет собой своеобразный расширенный учебник по математической статистике. Данный учебник не ограничен рамками учебного стандарта или вузовской программы --- он предназначен всем, кто интересуется математикой вообще и, в частности, хочет узнать, что такое современная математическая статистика, какие задачи и какими методами она решает, какие результаты в ней уже накоплены, какие проблемы в ней сегодня актуальны; наконец, каковы ее истоки, какой путь она прошла и какие ученые были ее творцами. По замыслу авторов, книга простым и доступным языком рассказывает о математической статистике и одновременно обучает ей. Вся теория объясняется и иллюстрируется на интересных и тщательно подобранных примерах. Книга может служить и задачником, так как содержит большой список упражнений для самостоятельного решения, а также справочным пособием по математической статистике, а в некоторых аспектах --- и по теории вероятностей.
Книга будет интересна преподавателям, аспирантам и студентам естественных и технических вузов, в которых изучается математическая статистика, научным работникам, использующим в своей деятельности методы математической статистики, а также самому широкому кругу любителей математики.
Cooling of tokamak boundary plasma owing to radiation of non-fully stripped lithium ions is considered as a promising way for protection of plasma facing elements (PFE) in tokamak. It may be effectively realized when the main part of lithium ions are involved in the closed circuit of migration between plasma and PFE surface. Such an approach may be implemented with the use of lithium device whose hot (500-600 °C) area to be effected by plasma serves as a Li-emitter and the cold part (∼180 °C) as a Li-collector in the shadow. Capillary-pore system (CPS) provides the returning of collected and condensed lithium to emitting zone by capillary forces. The main goals of the last T-11M lithium experiments were investigating Li ions transport in the tokamak scrape of layer (SOL) and their collecting by different kinds of limiters. The design of devices based on lithium CPS with different ratio of emitting/collecting area is the main subject of this paper. © 2015 The Authors.
Построена модель механического взаимодействия шероховатых поверхностей в виде марковского процесса с непрерывным временем. За основу взята дискретная модель, позволяющая учесть упругие и пластические деформации и усталостное разрушение при действии постоянной нагрузки. Выписана система интегродифференциальных уравнений Колмогорова-Феллера относительно распределений изменяющихся во времени высот выступов. Приведен расчетный пример эволюции распределений.
В первой части пособия рассмотрены дополнительные вопросы теории вероятностей, необходимые для изучения математической статистики, и начальные сведения по математической статистике.
Во второй части пособия подробно изложены вопросы, связанные с решением одной из основных задач математической статистики - параметрической задачи. Приведено много примеров.
Рекомендуется всем студентам МИЭМа, изучающим математическую статистику.
Центр конъюнктурных исследований Института статистических исследований и экономики знаний НИУ ВШЭ представляет информационно-аналитический материал «Деловой климат в оптовой торговле в I квартале 2012 года», подготовленный в рамках Программы фундаментальных исследований НИУ ВШЭ на основе ежеквартальных конъюнктурных опросов руководителей около 3 тыс. торговых компаний, проводимых Федеральной службой государственной статистики.
Конъюнктурные обследования направлены на оперативное получение от предпринимателей в дополнение к официальным статистическим данным краткосрочных качественных оценок о состоянии бизнеса и основных тенденциях его динамики, особенностях функционирования хозяйствующих субъектов, их намерениях, степени адаптации к механизмам хозяйствования, сложившемся деловом климате, а также о важнейших факторах, лимитирующих их деятельность.
Программа обследования гармонизирована с соответствующими подходами, принятыми в странах ОЭСР, и базируется на Гармонизированной Европейской Системе обследований деловых тенденций.
Структура выборочной совокупности идентична структуре генеральной статистической совокупности. При этом объем выборки достаточен для получения необходимой точности оценок показателей на всех уровнях разработки по разделу ОКВЭД (раздел G).
В сборнике представлены тезисы докладов участников XVIII Международной студенческой конференции-школы-семинара «Новые информационные технологии», состоявшейся в мае 2010 года.
Сборник состоит из двух разделов. Первый раздел сборника включает пленарные доклады ведущих специалистов. Второй раздел содержит тезисы докладов студентов и аспирантов, учащихся техникумов и колледжей, участвовавших в работе школы-семинара.
В основе настоящего учебного пособия лежит специальный курс по выбору студента, прочитанный автором на механико - математическом факультете МГУ им. М.В. Ломоносова в 2010-2012 учебных годах. Пособие знакомит читателя с методом параметрикса и его дискретным аналогом, развитым в самое последнее время автором пособия и его коллегами-соавторами. Оно объединяет воедино материал, который ранее содержался только в ряде журнальных статей. Не стремясь к максимальной общности изложения, автор ставил целью продемонстрировать возможности метода при доказательстве локальных предельных теорем о сходимости марковских цепей к диффузионному процессу и при получении двусторонних оценок типа Аронсона для некоторых вырожденных диффузий.
В сборнике представлены тезисы докладов участников XIX Международной студенческой конференции-школы-семинара «Новые информационные технологии», состоявшейся в мае 2011 года.
Сборник состоит из двух разделов. Первый раздел сборника включает пленарные доклады ведущих специалистов. Второй раздел содержит тезисы докладов студентов и аспирантов, учащихся техникумов и колледжей, участвовавших в работе школы-семинара.