• A
  • A
  • A
  • АБB
  • АБB
  • АБB
  • А
  • А
  • А
  • А
  • А
Обычная версия сайта

Статья

Аксиоматизируемость ненормальных и квазинормальных модальных предикатных логик первопорядково определимых классов шкал Крипке

Рассматривается вопрос о возможности эффективного описания ненормальных и квазинормальных предикатных модальных логик, определяемых семантически посредством классов шкал Крипке с выделенными мирами. Доказывается, что любая ненормальная или квазинормальная (в т. ч. нормальная) модальная предикатная логика, полная относительно некоторого первопорядково определимого класса шкал Крипке с выделенными мирами, погружается в классическую логику предикатов. Показано, как построить соответствующее погружение, используя т. н. стандартный перевод модальных предикатных формул в формулы языка классической логики предикатов. В конце работы приводятся следствия указанного результата, а также демонстрируются возможности обобщения описанной конструкции на классы других систем, в частности, на классы полимодальных логик - темпоральных логик с парой модальностей «всегда было» и «всегда будет» и логик знания с оператором распределенного знания. Показаны некоторые границы применимости описанного метода, приведены соответствующие примеры. Указаны контрпримеры, когда условия применимости метода для полной по Крипке модальной предикатной логики не выполнены, а построение эффективного описания этой логики, тем не менее, возможно.