Статья
Об условиях $L^2$-диссипативности линеаризованных явных КГД-разностных схем для уравнений одномерной газовой динамики
Изучается явная двухслойная по времени и симметричная по пространству разностная схема, аппроксимирующая 1D квазигазодинамическую систему уравнений. Она линеаризуется на постоянном решении и для нее выводятся новые как необходимые, так и достаточные условия $L^2$-диссипативности решений задачи Коши, в том числе впервые при ненулевой фоновой скорости в зависимости от числа Маха.
Показано, что можно обеспечить независимость условия на число Куранта от числа Маха. Результаты существенно развивают известный анализ устойчивости линеаризованной схемы Лакса-Вендроффа.
Апробируется новая явная двухслойная по времени и симметричная трехточечная по пространству разностная схема для системы уравнений одномерной газовой дина- мики. Схема основана на специальной квазигазодинамиче- ской регуляризации этой системы и является энтропийно консервативной. Проводится численное моделирование известных в литературе вариантов задачи Римана о распа- де разрыва.
Представлены доклады псвященные актуальным проблемам аналитической механики, механики сплошных сред, численных методов динамики систем, описываемых дифференциальными, алгебраическими и интегральными уравнениями. Опубликованные доклады представляют интерес для научных работников, аспирантов и инженеров, специализирующихся в области механики.
Рассматриваются явные двухслойные по времени и симметричные трехточечные по пространству разностные схемы для системы уравнений одномерной баротропной газовой динамики. Схемы основаны на специальных квазигазо/гидродинамических регуляризациях этой системы. Для линеаризованных на постоянном решении схем выводятся необходимое условие типа фон Неймана и критерий слабой консервативности задачи Коши по начальным данным в пространстве суммируемых с квадратом функций. Выполнено их сравнение между собой и с полученным ранее достаточным условием, в том числе посредством численных экспериментов для исходной нелинейной системы газовой динамики.
Квазигазодинамические (КГД) системы уравнений являются основой для построения класса разностных методов решения задач газовой динамики. Вопросы теории КГД систем, построение разностных методов и разнообразные приложения подробно представлены в нескольких недавних монографиях. Для стандартной дискретизации КГД системы в пространственно одномерном случае (n=1) выполнено подробное тестирование, наглядно демонстрирующее ее хорошие свойства.
Принципиально, что для КГД системы уравнений справедлив закон неубывания полной энтропии. В теоретическом плане представляет интерес строгое обоснование этого закона не только для самой КГД системы, но и для ее дискретизаций. К сожалению, для стандартных дискретизаций этого сделать не удается из-за появления сеточных незнакоопределенных дисбалансов.
В работе, во-первых, при n=1 предлагается новая консервативная симметричная трехточечная дискретизация по пространству, для которой уравнение баланса энтропии имеет надлежащий вид и производство энтропии неотрицательно. Для этого, в частности, строятся нелинейные "логарифмические" усреднения плотности и внутренней энергии.
Для баротропной КГД системы уравнений справедлив закон невозрастания полной энергии. Но для стандартных дискретизаций такой системы даже при n=1 выполнение этого закона обеспечить опять-таки не удается. В работе, во-вторых, предлагается новая консервативная симметричная трехточечная дискретизация по пространству этой системы, для которой уравнение энергетического баланса имеет надлежащий вид и полная энергия не возрастает (в том числе при наличии потенциальной массовой силы). Для этого строятся нестандартное усреднение плотности, зависящее от функции состояния, и нестандартная дискретизация производной этой функции. Как важный частный случай, эти результаты верны для квазигазодинамической системы уравнений мелкой воды в общем случае неровного дна.
Все результаты справедливы при произвольной неравномерной сетке.
Работа выполнена при финансовой поддержке программы "Научный фонд НИУ ВШЭ" в 2012-2013 гг., проект 11-01-0051.
Для квазигазодинамической системы уравнений справедлив закон неубывания полной энтропии. Основанные на ней разностные методы хорошо зарекомендовали себя в многочисленных практических и тестовых газодинамических расчетах.
Вместе с тем в теоретическом плане для стандартных дискретизаций по пространству этой системы даже в одномерном случае не удается получить точное выполнение этого закона из-за возникновения сеточных дисбалансных слагаемых.
Предлагается новая консервативная дискретизация по пространству квазигазодинамической системы уравнений, для которой уравнение баланса энтропии имеет надлежащий вид и гарантирована неотрицательность производства энтропии (что имеет место и при наличии как массовой силы, так и теплового источника).
Важным элементом этой дискретизации является использование нестандартных усреднений по пространству, включая нелинейные “логарифмические” усреднения плотности и внутренней энергии.
Результаты верны на произвольной неравномерной сетке.
На примере задачи Кеплера описывается метод Рауса отыскания стационарных движений и исследования их устойчивости.
Для баротропной квазигазодинамической системы уравнений справедлив закон невозрастания полной энергии. Но для ее стандартных дискретизаций даже в пространственно одномерном случае выполнение этого закона обеспечить не удается – возникают сеточные дисбалансные слагаемые. Предлагается новая консервативная симметричная по пространству дискретизация этой системы, для которой выводится уравнение энергетического баланса надлежащего вида и гарантировано невозрастание полной энергии (это имеет место и при наличии потенциальной массовой силы). Ее важными элементами являются нестандартное усреднение по пространству плотности, зависящее от функции состояния, и дискретизация производной этой функции. Результаты справедливы при произвольной неравномерной сетке. Как важный частный случай, эти результаты верны для регуляризованной (квазигазодинамической) системы уравнений мелкой воды в общем случае неровного дна. Здесь нестандартные дискретизации становятся стандартными, но все же метод остается новым. Он также обладает свойством типа хорошей сбалансированности. Работа выполнена при финансовой поддержке программы «Научный фонд НИУ ВШЭ» в 2012-2013 гг., проект 11-01-0051
В первой части пособия рассмотрены дополнительные вопросы теории вероятностей, необходимые для изучения математической статистики, и начальные сведения по математической статистике.
Во второй части пособия подробно изложены вопросы, связанные с решением одной из основных задач математической статистики - параметрической задачи. Приведено много примеров.
Рекомендуется всем студентам МИЭМа, изучающим математическую статистику.
Центр конъюнктурных исследований Института статистических исследований и экономики знаний НИУ ВШЭ представляет информационно-аналитический материал «Деловой климат в оптовой торговле в I квартале 2012 года», подготовленный в рамках Программы фундаментальных исследований НИУ ВШЭ на основе ежеквартальных конъюнктурных опросов руководителей около 3 тыс. торговых компаний, проводимых Федеральной службой государственной статистики.
Конъюнктурные обследования направлены на оперативное получение от предпринимателей в дополнение к официальным статистическим данным краткосрочных качественных оценок о состоянии бизнеса и основных тенденциях его динамики, особенностях функционирования хозяйствующих субъектов, их намерениях, степени адаптации к механизмам хозяйствования, сложившемся деловом климате, а также о важнейших факторах, лимитирующих их деятельность.
Программа обследования гармонизирована с соответствующими подходами, принятыми в странах ОЭСР, и базируется на Гармонизированной Европейской Системе обследований деловых тенденций.
Структура выборочной совокупности идентична структуре генеральной статистической совокупности. При этом объем выборки достаточен для получения необходимой точности оценок показателей на всех уровнях разработки по разделу ОКВЭД (раздел G).
Настоящая книга представляет собой своеобразный расширенный учебник по математической статистике. Данный учебник не ограничен рамками учебного стандарта или вузовской программы --- он предназначен всем, кто интересуется математикой вообще и, в частности, хочет узнать, что такое современная математическая статистика, какие задачи и какими методами она решает, какие результаты в ней уже накоплены, какие проблемы в ней сегодня актуальны; наконец, каковы ее истоки, какой путь она прошла и какие ученые были ее творцами. По замыслу авторов, книга простым и доступным языком рассказывает о математической статистике и одновременно обучает ей. Вся теория объясняется и иллюстрируется на интересных и тщательно подобранных примерах. Книга может служить и задачником, так как содержит большой список упражнений для самостоятельного решения, а также справочным пособием по математической статистике, а в некоторых аспектах --- и по теории вероятностей.
Книга будет интересна преподавателям, аспирантам и студентам естественных и технических вузов, в которых изучается математическая статистика, научным работникам, использующим в своей деятельности методы математической статистики, а также самому широкому кругу любителей математики.
Изучается задача минимизации среднеквадратичного отклонения однородной струны с закрепленными концами от положения равновесия. Управлением служит плотность внешних сил, действующих на струну. Предполагается, что заданы начальные условия и концы струны закреплены. Используется метод Фурье, который позволяет задачу управления уравнением в частных производных свести к задаче управления счетной системой обыкновенных дифференциальных уравнений. Для полученной задачи оптимального управления в пространстве l2 доказано, что оптимальный синтез содержит особые траектории и траектории с учащающимися переключениями. Для исходной задачи оптимального управления колебаниями струны доказано, что существует единственное решение, при этом оптимальное управление имеет счетное число переключений на конечном интервале времени.
Изучаются класс задач оптимального управления и порожденные ими гамильтоновы системы в пространстве l 2. Доказывается существование экстремалей со счетным числом переключений на конечном интервале времени. Построен оптимальный синтез в пространстве l 2, образующий расслоение с кусочно-гладкими двумерными слоями, состоящими из экстремалей со счетным числом переключений, над бесконечномерной базой особых экстремалей.
В данной работе рассматривается пятое уравнение Пенлеве, которое имеет 4 комплексных параметра α, β, γ, δ. Методами степенной геометрии ищутся асимптотические разложения его решений при x → ∞. При α≠0 найдено 10 степенных разложений с двумя экспоненциальными добавками каждое. Шесть из них - по целым степеням x (они были известны), и четыре по полуцелым (они новые). При α=0 найдено 4 однопараметрических семейства экспоненциальных асимптотик y(x) и 3 однопараметрических семейства сложных разложений x=x(y). Все экспоненциальные добавки, экспоненциальные асимптотики и сложные разложения найдены впервые. Также уточнена техника вычисления экспоненциальных добавок.
Эта публикация представляет собой сборник отдельных статей "Третьей Международной конференции по динамике информационных систем», которая состоялась в университете Флориды, 16-18 февраля 2011 года. Цель данной конференции заключалась в том, чтобы собрать вместе ученых и инженеров из промышленности, правительства и научных кругов, чтобы они смогли обменяться новыми открытиями и результатами в вопросах, имеющих отношение к теории и практике динамики информационных систем. Динамика информационных систем: математическое открытие представляет собой современное исследование и предназначается студентам – аспирантам и исследователям, которые интересуются самыми последними открытиями в информационной теории и динамичных системах. Ученые других дисциплин могут также получить пользу от применения новых разработок в своих областях исследований.
В работе построено новое распределение, отвечающее реальному благородному газу, а также уравнение состояний для него.
Статьи данного сборника написаны на основе докладов, сделанных в 2011 г. на социологическом факультете МГУ им. М.В. Ломоносова на заседании XIV Междисциплинарного ежегодного научного семинара "Математическое моделирование социальных процессов" им. Героя Социалистического труда академика А.А. Самарского.
Издание предназначено для научных сотрудников, преподавателей, учащихся вузов и научных учреждений РАН, интересующихся проблемами, разработкой и внедрением методологии математического моделирования социальных процессов.