• A
  • A
  • A
  • АБB
  • АБB
  • АБB
  • А
  • А
  • А
  • А
  • А
Обычная версия сайта

Препринт

Weak regularity of Gauss mass transport

arxiv.org. math. Cornell University, 2009. No. 0904.1852.
Given two probability measures $\mu$ and $\nu$ we consider a mass transportation mapping $T$ satisfying 1) $T$ sends $\mu$ to $\nu$, 2) $T$ has the form $T = \phi \frac{\nabla \phi}{|\nabla \phi|}$, where $\phi$ is a function with convex sublevel sets. We prove a change of variables formula for $T$. We also establish Sobolev estimates for $\phi$, and a new form of the parabolic maximum principle. In addition, we discuss relations to the Monge-Kantorovich problem, curvature flows theory, and parabolic nonlinear PDE's.