Препринт
On convergence rate for homogeneous Markov chains
We construct a four-parameter family of Markov processes on infinite Gelfand–Tsetlin schemes that preserve the class of central (Gibbs) measures. Any process in the family induces a Feller Markov process on the infinite-dimensional boundary of the Gelfand–Tsetlin graph or, equivalently, the space of extreme characters of the infinite-dimensional unitary group U(∞). The process has a unique invariant distribution which arises as the decomposing measure in a natural problem of harmonic analysis on U(∞) posed in Olshanski (2003) [44]. As was shown in Borodin and Olshanski (2005) [11], this measure can also be described as a determinantal point process with a correlation kernel expressed through the Gauss hypergeometric function.
Эта публикация представляет собой сборник отдельных статей "Третьей Международной конференции по динамике информационных систем», которая состоялась в университете Флориды, 16-18 февраля 2011 года. Цель данной конференции заключалась в том, чтобы собрать вместе ученых и инженеров из промышленности, правительства и научных кругов, чтобы они смогли обменяться новыми открытиями и результатами в вопросах, имеющих отношение к теории и практике динамики информационных систем. Динамика информационных систем: математическое открытие представляет собой современное исследование и предназначается студентам – аспирантам и исследователям, которые интересуются самыми последними открытиями в информационной теории и динамичных системах. Ученые других дисциплин могут также получить пользу от применения новых разработок в своих областях исследований.
Рассматривается система $M|GI|1|\infty$ с ненадежным прибором и временем обслуживания, зависящим от состояния системы. Находятся условие эргодичности системы и производящая функция для числа требований в системе в стационарном режиме.
В статье приведены результаты решения задачи алгоритмизации политологической модели «Власть – гражданское общество» с использованием аппарата теории марковских процессов и уравнений Фокера-Планка-Колмогорова. Решение этой задачи опирается на использование аналогий, почерпнутых из изучения естественнонаучных и других объектов, в целях математического моделирования механизмов перераспределения власти, потоков власти, «закона сохранения власти» и ряда других понятий важных для политологии, оперирующей в основном описательными и феноменологическими моделями, для уяснения и понимания характера, сложности, размерности исследуемых процессов.
Сборник составлен по результатам исследований молодых ученых, аспирантов и студентов МЭСИ, а также ряда вузов Москвы, Йошкар-Олы, Магнитогорска, Махачкалы, Пензы, Саранска, Саратова, Улан-Удэ. Рассмотренные на конференции (июнь 2011 г.) результаты исследований посвящены вопросам статистической методологии, применению математико-статистических и эконометрических методов в различных отраслях экономики и социальной сфере. Обобщается зарубежный опыт статистического анализа ряда проблем экономической и социальной жизни. Сравнивается эффективность различных методов, формулируются рекомендации по их выбору в зависимости от специфики решаемой задачи.
В основе настоящего учебного пособия лежит специальный курс по выбору студента, прочитанный автором на механико - математическом факультете МГУ им. М.В. Ломоносова в 2010-2012 учебных годах. Пособие знакомит читателя с методом параметрикса и его дискретным аналогом, развитым в самое последнее время автором пособия и его коллегами-соавторами. Оно объединяет воедино материал, который ранее содержался только в ряде журнальных статей. Не стремясь к максимальной общности изложения, автор ставил целью продемонстрировать возможности метода при доказательстве локальных предельных теорем о сходимости марковских цепей к диффузионному процессу и при получении двусторонних оценок типа Аронсона для некоторых вырожденных диффузий.
Статьи данного сборника написаны на основе докладов, сделанных в 2011 г. на социологическом факультете МГУ им. М.В. Ломоносова на заседании XIV Междисциплинарного ежегодного научного семинара "Математическое моделирование социальных процессов" им. Героя Социалистического труда академика А.А. Самарского.
Издание предназначено для научных сотрудников, преподавателей, учащихся вузов и научных учреждений РАН, интересующихся проблемами, разработкой и внедрением методологии математического моделирования социальных процессов.