• A
  • A
  • A
  • ABC
  • ABC
  • ABC
  • А
  • А
  • А
  • А
  • А
Regular version of the site

Article

Commentary: Spatial Olfactory Learning Contributes to Place Field Formation in the Hippocampus

Frontiers in Systems Neuroscience. 2018. Vol. 12. No. 8. P. 1-5.

The discovery of place-representing neurons in the hippocampal formation has been recognized by the Nobel Committee as a paradigm shift in Neuroscience (Burgess, 2014). Here we call attention to an innovative paper of particular note (Zhang and Manahan-Vaughan, 2015) that added important findings to this field of study.

Zhang and Manahan-Vaughan investigated the contribution of olfactory cues to the formation of place fields in hippocampal neurons. For this purpose, they put male Wistar rats in the darkness into a 80 × 80 cm square box. Four odors (orange, vanilla, almond, and lemon) were placed into the quadrants of the arena. Chocolate crumbs were scattered across the arena to encourage exploratory behavior. The researchers observed the formation of stable place fields in the hippocampal neurons, even though visual cues were unavailable to the rats. The place fields rotated when the odor placements were rotated, and remapped when the odors were shuffled. The authors concluded that “despite the less precise nature of olfactory stimuli compared with visual stimuli, these can substitute for visual inputs to enable the acquisition of metric information about space.”