Article
On LMI Approach to Robust State-Feedback H∞Control for Discrete-Time Descriptor Systems with Uncertainties in All Matrices
This paper deals with a state feedback H∞ control problem for linear discrete-time time-invariant (LDTI) uncertain descriptor systems. Considered systems contain norm-bounded parametric uncertainties in all matrices. Bounded real lemma (BRL) for descriptor systems with all known matrices is extended on the class of uncertain systems. The control design procedure based on the conditions of BRL for uncertain descriptor systems is proposed. Numerical example is included to illustrate the effectiveness of the present result.
An optimal control problem is formulated for a class of nonlinear systems for which there exists a coordinate representation (diffeomorphism) transforming the original system into a system with a linear main part and a nonlinear feedback. In this case the coordinate transformation significantly changes the form of original quadratic functional. The penalty matrices become dependent on the system state. The linearity of the structure of the transformed system and the quadratic functional make it possible to pass over from the Hamilton–Jacoby–Bellman equation to the Riccati type equation with state-dependent parameters upon the control synthesis. Note that it is impossible to solve the obtained form of Riccati equation analytically in the general case. It is necessary to approximate the solution; this approximation is realized by numerical methods using symbolic computer packages or interpolation methods. In the latter case, it is possible to obtain the suboptimal control. The presented example illustrates the application of the proposed control method for the feedback linearizable nonlinear system.
This paper is dedicated to optimal state-feedback control problem for discrete-time descriptor systems in presence of “colored” noise with known mean anisotropy level. Here “colored” noise stands for a stationary Gaussian sequence, generated by a linear shaping filter from the Gaussian white noise sequence. The control goal is to find a state feedback control law which makes the closed-loop system admissible and minimizes its a-anisotropic norm (mean anisotropy level a is known).
The theoretical fundamentals for solving the linear quadratic problems may be some times used to design the optimal control actions for the nonlinear systems. The method relying on the Riccati equation with state-dependent coefficients is promising and rapidly developing tools for design of the nonlinear controllers. The set of possible suboptimal solutions is generated by ambiguous representation of the nonlinear system as a linearly structured system with state-depended coefficients and the lack of sufficiently universal algorithms to solve the Riccati equation also having state-depended coefficients. The paper proposed a method to design a guaranteed control for the uncertain nonlinear plant with state-depended parameters. An example of design the controller for an uncertain nonlinear system was presented.
In this paper, anisotropy-based control problem with regional pole assignment for descriptor systems is investigated. The purpose is to find a state-feedback control law, which guar- antees desirable disturbance attenuation level from stochastic input with unknown covariance to controllable output of the closed-loop system, and ensures, that all finite eigenvalues of the closed-loop system belong to the given region inside the unit disk. The proposed control design procedure is based on solving convex optimization problem with strict constraints. The numerical effectiveness is illustrated by numerical example.
In this paper, linear discrete-time descriptor systems with norm-bounded parametric uncertainties are under consider- ation. The input signal is supposed to be a “colored” noise with bounded mean anisotropy. Sufficient conditions of anisotropic norm boundedness for such class of systems are given.
We consider certain spaces of functions on the circle, which naturally appear in harmonic analysis, and superposition operators on these spaces. We study the following question: which functions have the property that each their superposition with a homeomorphism of the circle belongs to a given space? We also study the multidimensional case.
We consider the spaces of functions on the m-dimensional torus, whose Fourier transform is p -summable. We obtain estimates for the norms of the exponential functions deformed by a C1 -smooth phase. The results generalize to the multidimensional case the one-dimensional results obtained by the author earlier in “Quantitative estimates in the Beurling—Helson theorem”, Sbornik: Mathematics, 201:12 (2010), 1811 – 1836.
We consider the spaces of function on the circle whose Fourier transform is p-summable. We obtain estimates for the norms of exponential functions deformed by a C1 -smooth phase.