Книга
ФУНКЦИОНАЛЬНО-ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ: ТЕОРИЯ И ПРИЛОЖЕНИЯ Материалы конференции, посвященной 95-летию со дня рождения профессора Н.В.Азбелева (Пермь, 17 –– 19 мая 2017 г.)
В сборнике представлены статьи, подготовленные по материалам
докладов научной конференции ¾Функционально-дифференциальные
уравнения: теория и приложения¿. Статьи посвящены следующим ак-
туальным проблемам дифференциальных и функционально-дифферен-
циальных уравнений, дискретных и гибридных динамических систем:
• краевые задачи,
• задачи оптимального управления,
• асимптотическое поведение решений,
• возможности конструктивного исследования.
Издание адресовано работникам научно-исследовательских органи-
заций, сотрудникам, аспирантам и студентам вузов.
Изучается игровое равновесие в модели с производством и экстерналия- ми в сети с двумя типами агентов, обладающих разной продуктивностью. Каждый агент может инвестировать часть своего начального запаса в первом из двух временных перио- дов; потребление во втором периоде зависит от его инвестиций и продуктивности, так же как и от инвестиций его соседей в сети. Возможны три способа поведения агента: пассив- ный (инвестиции отсутствуют), активный (инвестируется часть запаса) и гиперактивный (весь запас инвестируется). Вводится формализация понятия динамики в терминах систе- мы разностных уравнений, изучаются последствия объединения двух полных сетей с разной продуктивностью агентов и вопросы устойчивости равновесий.

Динамические модели, рассматриваемые в этой работе, с одной стороны, представляют собой конкретную реализацию абстрактных функционально-дифференциальных уравнений. С другой стороны, они охватывают широкий класс моделей, возникающих при исследовании реальных экономических и эколого-экономических процессов с учетом эффектов последействия (запаздывания) и импульсных возмущений (шоков), приводящих к скачкообразному изменению основных показателей функционирования изучаемой системы. Рассматриваемые модели содержат одновременно как уравнения, описывающие динамику показателей в непрерывном времени на конечном промежутке, так и уравнения с дискретным временем, характерным для эконометрических моделей. Для указанного класса систем исследуется вопрос о представлении решений, даются постановки краевых задач как задач о достижимости заданных значений показателей, задач управления и приводятся условия разрешимости этих задач в форме, допускающей эффективное исследование с использованием современных компьютерных технологий.
Рассматриваются линейные краевые задачи для систем функционально-дифференциальных уравнений с числом краевых условий, превышающим размерность системы. Исследуется разрешимость таких задач в случае, когда допускается приближенное выполнение краевых условий. Предлагаемый подход использует теоремы, условия которых допускают эффективную проверку с использованием современных средств вычислений.
В книге опубликованы труды XX Международной научно-технической конференции “Информационные средства и технологии”.
В сборнике представлены тезисы докладов участников XVIII Международной студенческой конференции-школы-семинара «Новые информационные технологии», состоявшейся в мае 2010 года.
Сборник состоит из двух разделов. Первый раздел сборника включает пленарные доклады ведущих специалистов. Второй раздел содержит тезисы докладов студентов и аспирантов, учащихся техникумов и колледжей, участвовавших в работе школы-семинара.
В основе настоящего учебного пособия лежит специальный курс по выбору студента, прочитанный автором на механико - математическом факультете МГУ им. М.В. Ломоносова в 2010-2012 учебных годах. Пособие знакомит читателя с методом параметрикса и его дискретным аналогом, развитым в самое последнее время автором пособия и его коллегами-соавторами. Оно объединяет воедино материал, который ранее содержался только в ряде журнальных статей. Не стремясь к максимальной общности изложения, автор ставил целью продемонстрировать возможности метода при доказательстве локальных предельных теорем о сходимости марковских цепей к диффузионному процессу и при получении двусторонних оценок типа Аронсона для некоторых вырожденных диффузий.
Настоящая книга представляет собой своеобразный расширенный учебник по математической статистике. Данный учебник не ограничен рамками учебного стандарта или вузовской программы --- он предназначен всем, кто интересуется математикой вообще и, в частности, хочет узнать, что такое современная математическая статистика, какие задачи и какими методами она решает, какие результаты в ней уже накоплены, какие проблемы в ней сегодня актуальны; наконец, каковы ее истоки, какой путь она прошла и какие ученые были ее творцами. По замыслу авторов, книга простым и доступным языком рассказывает о математической статистике и одновременно обучает ей. Вся теория объясняется и иллюстрируется на интересных и тщательно подобранных примерах. Книга может служить и задачником, так как содержит большой список упражнений для самостоятельного решения, а также справочным пособием по математической статистике, а в некоторых аспектах --- и по теории вероятностей.
Книга будет интересна преподавателям, аспирантам и студентам естественных и технических вузов, в которых изучается математическая статистика, научным работникам, использующим в своей деятельности методы математической статистики, а также самому широкому кругу любителей математики.
В сборнике представлены тезисы докладов участников XIX Международной студенческой конференции-школы-семинара «Новые информационные технологии», состоявшейся в мае 2011 года.
Сборник состоит из двух разделов. Первый раздел сборника включает пленарные доклады ведущих специалистов. Второй раздел содержит тезисы докладов студентов и аспирантов, учащихся техникумов и колледжей, участвовавших в работе школы-семинара.