• A
  • A
  • A
  • АБB
  • АБB
  • АБB
  • А
  • А
  • А
  • А
  • А
Обычная версия сайта

Статья

Пространственная дискретизация одномерной баротропной квазигазодинамической системы уравнений и уравнение энергетического баланса

Математическое моделирование. 2012. Т. 24. № 10. С. 51-64.

Для баротропной квазигазодинамической системы уравнений справедлив закон невозрастания полной энергии. Но для ее стандартных дискретизаций даже в пространственно одномерном случае выполнение этого закона обеспечить не удается – возникают сеточные дисбалансные слагаемые. Предлагается новая консервативная симметричная по пространству дискретизация этой системы, для которой выводится уравнение энергетического баланса надлежащего вида и гарантировано невозрастание полной энергии (это имеет место и при наличии потенциальной массовой силы). Ее важными элементами являются нестандартное усреднение по пространству плотности, зависящее от функции состояния, и дискретизация производной этой функции. Результаты справедливы при произвольной неравномерной сетке. Как важный частный случай, эти результаты верны для регуляризованной (квазигазодинамической) системы уравнений мелкой воды в общем случае неровного дна. Здесь нестандартные дискретизации становятся стандартными, но все же метод остается новым. Он также обладает свойством типа хорошей сбалансированности. Работа выполнена при финансовой поддержке программы «Научный фонд НИУ ВШЭ» в 2012-2013 гг., проект 11-01-0051