• A
  • A
  • A
  • АБB
  • АБB
  • АБB
  • А
  • А
  • А
  • А
  • А
Обычная версия сайта

Статья

Графики некоторого класса вполне геодезических слоений на псевдоримановых многообразиях

Исследуются вполне геодезические слоения $F$ произвольной коразмерности на $n$-мерных псевдоримановых многообразиях, метрика на слоях которых не вырождается, а дополнительное по ортогональности распределение является связностью Эресмана. Общепринятый график $G(F)$ такого слоения, вообще говоря, является нехаусдорфовым многообразием, поэтому мы исследуем график $G_{\mathfrak{M}}(F)$ слоения со связностью Эресмана $\mathfrak M$, введенный ранее автором, который всегда хаусдорфов. Мы доказываем, что на графике $G_{\mathfrak{M}}(F)$ определена псевдориманова метрика, относительно которой индуцированное слоение и простые слоения, образованные слоями
канонических проекций, являются вполне геодезическими. Доказано, что слои индуцированного слоения
на исследуемом графике являются невырожденно приводимыми псевдоримановыми многообразиями и дано описание их структуры. Рассмотрено приложение к графикам параллельных слоений на невырожденно
приводимых псевдоримановых многообразиях. Показано, что любое слоение, полученное надстройкой гомоморфизма фундаментальной группы псевдориманова многообразия, относится к исследуемому классу слоений.