Статья
On Conservative Spatial Discretizations of the Barotropic Quasi-Gasdynamic System of Equations with a Potential Body Force
For the quasi-gasdynamic system of equations, there holds the law of nondecreasing entropy. Difference methods based on this system have been successfully used in numerous applications and test gasdynamic computations. In theoretical terms, however, for standard spatial discretizations of this system, the nondecreasing entropy law does not hold exactly even in the one-dimensional case because of the mesh imbalance terms. For the quasi-gasdynamic equations, a new conservative spatial discretization is proposed for which the entropy balance equation has an appropriate form and the entropy production is guaranteed to be nonnegative (which also holds in the presence of body forces and heat sources). An important element of this discretization is that it makes use of nonstandard space-averaging techniques, including a nonlinear "logarithmic" averaging of the density and internal energy. The results hold on arbitrary nonuniform meshes
The inhomogeneous initial-boundary value problems (IBVPs) are posed for the Navier-Stokes systems of equations describing the viscous barotropic and heat-conducting gas 1D flow in the Lagrangian mass coordinates. Weak solutions are studied without any restrictions on the magnitude of norms of data. Assumptions on the data are genuinely general, in particular, the initial data are taken from the Lebesgue spaces, the contact problems for different gases are covered, etc. Both the global in time existence of the weak solutions as well as their uniqueness and Lipschitz continuous dependence on data are proved thus ensuring the well-posedness of the IBVPs. The regularity issue is studied as well.
Рассматриваются явные двухслойные по времени и симметричные трехточечные по пространству разностные схемы для системы уравнений одномерной баротропной газовой динамики. Схемы основаны на специальных квазигазо/гидродинамических регуляризациях этой системы. Для линеаризованных на постоянном решении схем выводятся необходимое условие типа фон Неймана и критерий слабой консервативности задачи Коши по начальным данным в пространстве суммируемых с квадратом функций. Выполнено их сравнение между собой и с полученным ранее достаточным условием, в том числе посредством численных экспериментов для исходной нелинейной системы газовой динамики.
We deal with the 1d shallow water system of equations and exploit its special parabolic regularization satisfying the energy balance law. We construct a three-point symmetric in space discretization such that the discrete energy balance law holds and check that it is well-balanced. The results of numerical experiments for the associated explicit finite-difference scheme are also given for several known tests to confirm its reliability and some advantages. The practical error behavior is also analyzed.
Для квазигазодинамической системы уравнений справедлив закон неубывания полной энтропии. Основанные на ней разностные методы хорошо зарекомендовали себя в многочисленных практических и тестовых газодинамических расчетах.
Вместе с тем в теоретическом плане для стандартных дискретизаций по пространству этой системы даже в одномерном случае не удается получить точное выполнение этого закона из-за возникновения сеточных дисбалансных слагаемых.
Предлагается новая консервативная дискретизация по пространству квазигазодинамической системы уравнений, для которой уравнение баланса энтропии имеет надлежащий вид и гарантирована неотрицательность производства энтропии (что имеет место и при наличии как массовой силы, так и теплового источника).
Важным элементом этой дискретизации является использование нестандартных усреднений по пространству, включая нелинейные “логарифмические” усреднения плотности и внутренней энергии.
Результаты верны на произвольной неравномерной сетке.
Труды содержат доклады, представленные учеными из России, Украины, Белоруссии, Казахстана, Эстонии, Узбекистана, Германии, Польши, посвященные актуальным проблемам радиационной физики твердого тела (влияние радиации на физико-химические свойства и структуру металлических, полупроводниковых и диэлектрических материалов, влияние факторов космического пространства на свойства конструкционных и функциональных материалов и покрытий космических аппаратов, радиационно-технологические методы получения материалов, в частности наноматериалов, модифицирования и обработки материалов с целью улучшения их эксплуатационных свойств, создание и получение экологически чистых материалов с низкой наведенной радиоактивностью и др.).
Труды содержат доклады, представленные специалистами из России, Украины, Белорусии, Казахстана, Узбекистана, Германии, Великобритании, Польши по направлениям:«Радиационная физика металлов», «Радиационная физика неметаллических материалов», «Физические основы радиационной технологии» и посвященные разнообразным проблемам радиационной физики твердого тела (процессы прохождения заряженных и нейтральных частиц, рентгеновского и гамма-излучений через вещество, электрон-атомные, атом-атомные, ион-атомные и др. столкновения в твердых телах, ориентационные явления при взаимодействии высокоэнергетических частиц с твердым телом, радиационно-индуцированные и радиационно-стимулированные явления в твердых телах и др.).
Работа посвящена численному моделированию спирально-вихревых структур во вращающихся газовых дисках в рамках простой модели двумерных нестационарных баротропных уравнений Эйлера с массовой силой и указывает на возможность чисто гидродинамической основы формирования и эволюции таких структур. Выводятся новые аксиально симметричные стационарные решения уравнений, модифицирующие известные приближенные решения. Эти решения с малыми возмущениями используются как начальные данные в нестационарной задаче, для решения которой демонстрируется образование рукавов плотности с их раздвоением и анализируется перераспределение углового момента. Дополнительно подтверждается корректность лабораторных экспериментов с мелкой водой для описания формирования крупных вихревых структур в тонких газовых дисках. Расчеты основаны на специальной КГД регуляризации уравнений Эйлера в полярных координатах.
Рассматриваются пространства функций на окружности, естественным образом возникающие в гармоническом анализе, и операторы замены переменной (суперпозиции с гомеоморфизмами окружности) в этих пространствах. В работе рассматривается вопрос о том, какие функции обладают тем свойством, что любая их суперпозиция с гомеоморфизмом принадлежит заданному пространству. Рассмотрен также многомерный случай.
Рассматриваются пространства функций на m -мерном торе, преобразование Фурье которых p -суммируемо. Получены оценки норм экспонент деформированных посреством C1 -гладкой фазовой функции. Результаты являются распространением на многомерный случай оценок, полученных автором ранее для одномерного случая в работе «Количественные оценки в теоремах типа теоремы Берлинга--Хелсона» Математический сборник, 201:12 (2010), 103-130.
Рассматриваются пространства функций на окружности таких, что их преобразование Фурье является p-суммируемым. Получены оценки норм экспонент, деформированных посредством C1 -гладкой фазовой функции.
Настоящая книга представляет собой своеобразный расширенный учебник по математической статистике. Данный учебник не ограничен рамками учебного стандарта или вузовской программы --- он предназначен всем, кто интересуется математикой вообще и, в частности, хочет узнать, что такое современная математическая статистика, какие задачи и какими методами она решает, какие результаты в ней уже накоплены, какие проблемы в ней сегодня актуальны; наконец, каковы ее истоки, какой путь она прошла и какие ученые были ее творцами. По замыслу авторов, книга простым и доступным языком рассказывает о математической статистике и одновременно обучает ей. Вся теория объясняется и иллюстрируется на интересных и тщательно подобранных примерах. Книга может служить и задачником, так как содержит большой список упражнений для самостоятельного решения, а также справочным пособием по математической статистике, а в некоторых аспектах --- и по теории вероятностей.
Книга будет интересна преподавателям, аспирантам и студентам естественных и технических вузов, в которых изучается математическая статистика, научным работникам, использующим в своей деятельности методы математической статистики, а также самому широкому кругу любителей математики.
В данной работе рассматривается пятое уравнение Пенлеве, которое имеет 4 комплексных параметра. Методами степенной геометрии ищутся асимптотические разложения его решений в окрестности его неособой точки z=z0, z0≠0, z0≠∞, при любых значениях параметров уравнения. Показано, что имеется ровно 10 семейств разложений решений уравнения. Все они - по целым степеням локальной переменной z - z0. Из них одно новое; у него произвольный коэффициент при четвертой степени локальной переменной. Одно из семейств однопараметрическое, остальные - двухпараметрические. Доказано, что все разложения сходятся в окрестности (а являющиеся полюсами - в проколотой окрестности) точки z=z0.
В учебном пособии рассматриваются базовые вопросы компьютерной лингвистики: от теории лингвистического и математического моделирования до вариантов технологических решений. Дается лингвистическая интерпретация основных лингвистических объектов и единиц анализа. Приведены сведения, необходимые для создания отдельных подсистем, отвечающих за анализ текстов на естественном языке. Рассматриваются вопросы построения систем классификации и кластеризации текстовых данных, основы фрактальной теории текстовой информации.
Предназначено для студентов и аспирантов высших учебных заведений, работающих в области обработки текстов на естественном языке.
В данной работе рассматривается пятое уравнение Пенлеве, которое имеет 4 комплексных параметра α, β, γ, δ. Методами степенной геометрии ищутся асимптотические разложения его решений при x → ∞. При α≠0 найдено 10 степенных разложений с двумя экспоненциальными добавками каждое. Шесть из них - по целым степеням x (они были известны), и четыре по полуцелым (они новые). При α=0 найдено 4 однопараметрических семейства экспоненциальных асимптотик y(x) и 3 однопараметрических семейства сложных разложений x=x(y). Все экспоненциальные добавки, экспоненциальные асимптотики и сложные разложения найдены впервые. Также уточнена техника вычисления экспоненциальных добавок.
В данной работе рассматривается пятое уравнение Пенлеве. Методами степенной геометрии ищутся асимптотические разложения его решений при x → 0. Получено 27 семейств разложений решений уравнения. 19 из них получены из разложений решений шестого уравнения Пенлеве. Среди остальных 8 семейств одно было известно раньше, ещё одно может быть получено из разложения решения третьего уравнения Пенлеве. Новыми являются 3 семейства полуэкзотических разложений, 2 семейства сложных разложений и семейство степенно-логарифмических разложений.