Статья
Энергетическая функция и топологическая классификация потоков Морса-Смейла на поверхностях
В работе вводится понятие согласованной эквивалентности энергетических функций Морса-Ботта для потоков Морса-Смейла на поверхностях и доказывается, что согласованная эквивалентность энергетических функций является необходимым и достаточным условием топологической эквивалентности таких потоков. Предлагаемый результат устраняет неточность в доказательстве аналогичного факта К. Мейером, замеченную А.А. Ошемковым и В.В. Шарко.
Работа является продолжением работы [#!gurevich-GrPoSaRu!#] и посвящена топологической классификации градиентно-подобных потоков, заданных на гладком замкнутом ориентируемом многообразии M n размерности n>3, с использованием энергетической функции. Рассмотрен класс G(M n)градиентно-подобных потоков без гетероклинических пересечений, все седловые состояния равновесия которых имеют индекс Морса 1 или (n-1). Показано, что необходимое и достаточное условие топологической эквивалентности потоков из класса G(M n) состоит в эквивалентности соответствующих энергетических функций и одновременном выполнении специального условия эквивалентности функций на выделенной поверхности уровня. Выделен класс потоков G 0(M n), для которых энергетическая функция является полным топологическим инвариантом. Результаты работы могут быть применены для качественного изучения динамики таких структурно-устойчивых динамических систем, для которых энергетическая функция известна из физического контекста модели (например, как функция энергии для диссипативных систем в механике, потенциал электростатического поля, или, при условии пренебрежения электрическими токами, как потенциал магнитного поля).
Для потоков Морса-Смейла на поверхностях вводится понятие согласованной эквивалентности \xi-функций Мейера (являющихся функциями Ляпунова) и доказывается, что согласованная эквивалентность $\xi$-функций является необходимым и достаточным условием топологической эквивалентности таких потоков. Предлагаемый результат устраняет неточность в доказательстве аналогичного факта К. Мейером.
Устанавливается, что граф Пейкшото является полным инвариантом топологической сопряженности в классе сохраняющих ориентацию диффеоморфизмов G1(Mn) Морса–Смейла, заданных на замкнутом ориентируемом многообразии Mn размерности, большей трех, и таких, что для любого f∈G1(Mn) множество неустойчивых сепаратрис одномерно и не содержит гетероклинических орбит.
Содержится 16 задач типового расчета по темам “Системы дифференциальных уравнений” и ”Устойчивость”.
Пособие составлено так, чтобы охватить все важные задачи соответствующей части программы по курсу “Дифференциальные уравнения”, отсутствующие визвестных сборниках типового расчета по высшей математике.
Изучен класс G1(Mn) сохраняющих ориентацию диффеоморфизмов Морса–Смейла, заданных на замкнутом ориентируемом многообразии Mn размерности n>3, таких, что для любого f∈G1(Mn) множество неустойчивых сепаратрис одномерно и не содержит гетероклинических пересечений. Для диффеоморфизмов из класса G1(Mn) доказано, что полным топологическим инвариантом является граф Пейкшото (оснащенный автоморфизмом), и для каждого класса топологически сопряженных диффеоморфизмов построен стандартный представитель.
Настоящая книга представляет собой своеобразный расширенный учебник по математической статистике. Данный учебник не ограничен рамками учебного стандарта или вузовской программы --- он предназначен всем, кто интересуется математикой вообще и, в частности, хочет узнать, что такое современная математическая статистика, какие задачи и какими методами она решает, какие результаты в ней уже накоплены, какие проблемы в ней сегодня актуальны; наконец, каковы ее истоки, какой путь она прошла и какие ученые были ее творцами. По замыслу авторов, книга простым и доступным языком рассказывает о математической статистике и одновременно обучает ей. Вся теория объясняется и иллюстрируется на интересных и тщательно подобранных примерах. Книга может служить и задачником, так как содержит большой список упражнений для самостоятельного решения, а также справочным пособием по математической статистике, а в некоторых аспектах --- и по теории вероятностей.
Книга будет интересна преподавателям, аспирантам и студентам естественных и технических вузов, в которых изучается математическая статистика, научным работникам, использующим в своей деятельности методы математической статистики, а также самому широкому кругу любителей математики.
В первой части пособия рассмотрены дополнительные вопросы теории вероятностей, необходимые для изучения математической статистики, и начальные сведения по математической статистике.
Во второй части пособия подробно изложены вопросы, связанные с решением одной из основных задач математической статистики - параметрической задачи. Приведено много примеров.
Рекомендуется всем студентам МИЭМа, изучающим математическую статистику.
Центр конъюнктурных исследований Института статистических исследований и экономики знаний НИУ ВШЭ представляет информационно-аналитический материал «Деловой климат в оптовой торговле в I квартале 2012 года», подготовленный в рамках Программы фундаментальных исследований НИУ ВШЭ на основе ежеквартальных конъюнктурных опросов руководителей около 3 тыс. торговых компаний, проводимых Федеральной службой государственной статистики.
Конъюнктурные обследования направлены на оперативное получение от предпринимателей в дополнение к официальным статистическим данным краткосрочных качественных оценок о состоянии бизнеса и основных тенденциях его динамики, особенностях функционирования хозяйствующих субъектов, их намерениях, степени адаптации к механизмам хозяйствования, сложившемся деловом климате, а также о важнейших факторах, лимитирующих их деятельность.
Программа обследования гармонизирована с соответствующими подходами, принятыми в странах ОЭСР, и базируется на Гармонизированной Европейской Системе обследований деловых тенденций.
Структура выборочной совокупности идентична структуре генеральной статистической совокупности. При этом объем выборки достаточен для получения необходимой точности оценок показателей на всех уровнях разработки по разделу ОКВЭД (раздел G).
В сборнике представлены тезисы докладов участников XVIII Международной студенческой конференции-школы-семинара «Новые информационные технологии», состоявшейся в мае 2010 года.
Сборник состоит из двух разделов. Первый раздел сборника включает пленарные доклады ведущих специалистов. Второй раздел содержит тезисы докладов студентов и аспирантов, учащихся техникумов и колледжей, участвовавших в работе школы-семинара.
В основе настоящего учебного пособия лежит специальный курс по выбору студента, прочитанный автором на механико - математическом факультете МГУ им. М.В. Ломоносова в 2010-2012 учебных годах. Пособие знакомит читателя с методом параметрикса и его дискретным аналогом, развитым в самое последнее время автором пособия и его коллегами-соавторами. Оно объединяет воедино материал, который ранее содержался только в ряде журнальных статей. Не стремясь к максимальной общности изложения, автор ставил целью продемонстрировать возможности метода при доказательстве локальных предельных теорем о сходимости марковских цепей к диффузионному процессу и при получении двусторонних оценок типа Аронсона для некоторых вырожденных диффузий.
В сборнике представлены тезисы докладов участников XIX Международной студенческой конференции-школы-семинара «Новые информационные технологии», состоявшейся в мае 2011 года.
Сборник состоит из двух разделов. Первый раздел сборника включает пленарные доклады ведущих специалистов. Второй раздел содержит тезисы докладов студентов и аспирантов, учащихся техникумов и колледжей, участвовавших в работе школы-семинара.