Препринт
О двумерном численном КГД моделировании спирально-вихревых структур в аккреционных газовых дисках
Рассмотрено решение начально-краевой задачи для одномерного самосопряженного параболического уравнения на полуоси. Изучено широкое семейство двухслойных разностных схем с двумя параметрами — с усреднениями с весами как по времени, так и по пространству. Доказана их устойчивость в двух нормах энергетическим методом. Строго выведены дискретные прозрачные граничные условия методом производящих функций. Приведены результаты численных экспериментов.
Работа выполнена при финансовой поддержке программы «Научный фонд НИУ ВШЭ» в 2012-2013 гг., проект 11-01-0051
Созданы компоненты системы математического моделирования для имитационного моделирования механических испытаний на растяжение образца. Были проведены численные эксперименты по специальной программе нагружения, при которой формоизменение происходило в определённом диапазоне скоростей деформации, необходимом для реализации эффекта сверхпластичности. Регулирование данного параметра было достигнуто путём автоматического изменения скорости траверсы в процессе эксперимента. В качестве тестового задания была выбрана осесимметричная задача: моделирование теста на растяжение заготовки-винта.
Рассматриваются явные двухслойные по времени и симметричные трехточечные по пространству разностные схемы для системы уравнений одномерной баротропной газовой динамики. Схемы основаны на специальных квазигазо/гидродинамических регуляризациях этой системы. Для линеаризованных на постоянном решении схем выводятся необходимое условие типа фон Неймана и критерий слабой консервативности задачи Коши по начальным данным в пространстве суммируемых с квадратом функций. Выполнено их сравнение между собой и с полученным ранее достаточным условием, в том числе посредством численных экспериментов для исходной нелинейной системы газовой динамики.
We deal with the 1d shallow water system of equations and exploit its special parabolic regularization satisfying the energy balance law. We construct a three-point symmetric in space discretization such that the discrete energy balance law holds and check that it is well-balanced. The results of numerical experiments for the associated explicit finite-difference scheme are also given for several known tests to confirm its reliability and some advantages. The practical error behavior is also analyzed.
Квазигазодинамические (КГД) системы уравнений являются основой для построения класса разностных методов решения задач газовой динамики. Вопросы теории КГД систем, построение разностных методов и разнообразные приложения подробно представлены в нескольких недавних монографиях. Для стандартной дискретизации КГД системы в пространственно одномерном случае (n=1) выполнено подробное тестирование, наглядно демонстрирующее ее хорошие свойства.
Принципиально, что для КГД системы уравнений справедлив закон неубывания полной энтропии. В теоретическом плане представляет интерес строгое обоснование этого закона не только для самой КГД системы, но и для ее дискретизаций. К сожалению, для стандартных дискретизаций этого сделать не удается из-за появления сеточных незнакоопределенных дисбалансов.
В работе, во-первых, при n=1 предлагается новая консервативная симметричная трехточечная дискретизация по пространству, для которой уравнение баланса энтропии имеет надлежащий вид и производство энтропии неотрицательно. Для этого, в частности, строятся нелинейные "логарифмические" усреднения плотности и внутренней энергии.
Для баротропной КГД системы уравнений справедлив закон невозрастания полной энергии. Но для стандартных дискретизаций такой системы даже при n=1 выполнение этого закона обеспечить опять-таки не удается. В работе, во-вторых, предлагается новая консервативная симметричная трехточечная дискретизация по пространству этой системы, для которой уравнение энергетического баланса имеет надлежащий вид и полная энергия не возрастает (в том числе при наличии потенциальной массовой силы). Для этого строятся нестандартное усреднение плотности, зависящее от функции состояния, и нестандартная дискретизация производной этой функции. Как важный частный случай, эти результаты верны для квазигазодинамической системы уравнений мелкой воды в общем случае неровного дна.
Все результаты справедливы при произвольной неравномерной сетке.
Работа выполнена при финансовой поддержке программы "Научный фонд НИУ ВШЭ" в 2012-2013 гг., проект 11-01-0051.
Журналы событий, сохраняемые современными информационными и техническими системами, как правило, содержат достаточно данных для автоматизированного восстановления моделей соответствующих процессов. Разработано множество алгоритмов для построения моделей процессов, проверки соответствия фактического поведения системы модельному, сравнения моделей процессов, и т.д. Однако возможность быстрого анализа выбираемых пользователями частей журнала до сих пор не нашла полноценной реализации. В статье описан метод многомерного хранения журналов событий для извлечения и анализа процессов, основанный на подходе ROLAP. Результатом анализа журнала является направленный невзвешенный граф, представляющий собою сумму возможных последовательностей событий, упорядоченных по вероятности их возникновения с учетом заданных условий. Разработанный инструмент позволяет выполнять совместный анализ моделей подпроцессов, восстановленных из частей журнала путем задания критериев отбора событий и требуемого уровня детализации модели.
Труды содержат доклады, представленные учеными из России, Украины, Белоруссии, Казахстана, Эстонии, Узбекистана, Германии, Польши, посвященные актуальным проблемам радиационной физики твердого тела (влияние радиации на физико-химические свойства и структуру металлических, полупроводниковых и диэлектрических материалов, влияние факторов космического пространства на свойства конструкционных и функциональных материалов и покрытий космических аппаратов, радиационно-технологические методы получения материалов, в частности наноматериалов, модифицирования и обработки материалов с целью улучшения их эксплуатационных свойств, создание и получение экологически чистых материалов с низкой наведенной радиоактивностью и др.).
Труды содержат доклады, представленные специалистами из России, Украины, Белорусии, Казахстана, Узбекистана, Германии, Великобритании, Польши по направлениям:«Радиационная физика металлов», «Радиационная физика неметаллических материалов», «Физические основы радиационной технологии» и посвященные разнообразным проблемам радиационной физики твердого тела (процессы прохождения заряженных и нейтральных частиц, рентгеновского и гамма-излучений через вещество, электрон-атомные, атом-атомные, ион-атомные и др. столкновения в твердых телах, ориентационные явления при взаимодействии высокоэнергетических частиц с твердым телом, радиационно-индуцированные и радиационно-стимулированные явления в твердых телах и др.).
В сборнике представлены тезисы докладов участников XIX Международной студенческой конференции-школы-семинара «Новые информационные технологии», состоявшейся в мае 2011 года.
Сборник состоит из двух разделов. Первый раздел сборника включает пленарные доклады ведущих специалистов. Второй раздел содержит тезисы докладов студентов и аспирантов, учащихся техникумов и колледжей, участвовавших в работе школы-семинара.
Изучается задача минимизации среднеквадратичного отклонения однородной струны с закрепленными концами от положения равновесия. Управлением служит плотность внешних сил, действующих на струну. Предполагается, что заданы начальные условия и концы струны закреплены. Используется метод Фурье, который позволяет задачу управления уравнением в частных производных свести к задаче управления счетной системой обыкновенных дифференциальных уравнений. Для полученной задачи оптимального управления в пространстве l2 доказано, что оптимальный синтез содержит особые траектории и траектории с учащающимися переключениями. Для исходной задачи оптимального управления колебаниями струны доказано, что существует единственное решение, при этом оптимальное управление имеет счетное число переключений на конечном интервале времени.
Изучаются класс задач оптимального управления и порожденные ими гамильтоновы системы в пространстве l 2. Доказывается существование экстремалей со счетным числом переключений на конечном интервале времени. Построен оптимальный синтез в пространстве l 2, образующий расслоение с кусочно-гладкими двумерными слоями, состоящими из экстремалей со счетным числом переключений, над бесконечномерной базой особых экстремалей.
В данной работе рассматривается пятое уравнение Пенлеве, которое имеет 4 комплексных параметра α, β, γ, δ. Методами степенной геометрии ищутся асимптотические разложения его решений при x → ∞. При α≠0 найдено 10 степенных разложений с двумя экспоненциальными добавками каждое. Шесть из них - по целым степеням x (они были известны), и четыре по полуцелым (они новые). При α=0 найдено 4 однопараметрических семейства экспоненциальных асимптотик y(x) и 3 однопараметрических семейства сложных разложений x=x(y). Все экспоненциальные добавки, экспоненциальные асимптотики и сложные разложения найдены впервые. Также уточнена техника вычисления экспоненциальных добавок.
Эта публикация представляет собой сборник отдельных статей "Третьей Международной конференции по динамике информационных систем», которая состоялась в университете Флориды, 16-18 февраля 2011 года. Цель данной конференции заключалась в том, чтобы собрать вместе ученых и инженеров из промышленности, правительства и научных кругов, чтобы они смогли обменяться новыми открытиями и результатами в вопросах, имеющих отношение к теории и практике динамики информационных систем. Динамика информационных систем: математическое открытие представляет собой современное исследование и предназначается студентам – аспирантам и исследователям, которые интересуются самыми последними открытиями в информационной теории и динамичных системах. Ученые других дисциплин могут также получить пользу от применения новых разработок в своих областях исследований.
В работе построено новое распределение, отвечающее реальному благородному газу, а также уравнение состояний для него.
Статьи данного сборника написаны на основе докладов, сделанных в 2011 г. на социологическом факультете МГУ им. М.В. Ломоносова на заседании XIV Междисциплинарного ежегодного научного семинара "Математическое моделирование социальных процессов" им. Героя Социалистического труда академика А.А. Самарского.
Издание предназначено для научных сотрудников, преподавателей, учащихся вузов и научных учреждений РАН, интересующихся проблемами, разработкой и внедрением методологии математического моделирования социальных процессов.