### Book

## Теория вероятностей и математическая статистика в задачах: Более 360 задач и упражнений

The purpose of this paper is the presentation of the ideas and concepts that

form the basis of the concept of mathematical model control some processes

occurring in the Russian market of cereals. The estimated model must have a

stochastic nature, i.e. constitute some random process. Indeed, in a free market

there are objectively random factors that cannot be described by deterministic.

An approach to the physical language, pointed out by Poincare in a philosophical work, is to link probability theory to arithmetic and thermodynamics. We follow this program in the part concerning a generalization of probability theory.

We study the problem of testing composite hypotheses versus composite alternatives when there is a slight deviation between the model and the real distribution. The used approach, which we called sub-optimal testing, implies an extension of the initial model and a modification of a sequential statistically significant test for the new model. The sub-optimal test is proposed and a non-asymptotic border for the loss function is obtained. Also we investigate correlation between the sub-optimal test and the sequential probability ratio test for the initial model.

The complexity of today’s statistical data calls for modern mathematical tools. Many fields of science make use of mathematical statistics and require continuous updating on statistical technologies. Practice makes perfect, since mastering the tools makes them applicable. Our book of exercises and solutions offers a wide range of applications and numerical solutions based on R. In modern mathematical statistics, the purpose is to provide statistics students with a number of basic exercises and also an understanding of how the theory can be applied to real-world problems. The application aspect is also quite important, as most previous exercise books are mostly on theoretical derivations. Also we add some problems from topics often encountered in recent research papers. The book was written for statistics students with one or two years of coursework in mathematical statistics and probability, professors who hold courses in mathematical statistics, and researchers in other fields who would like to do some exercises on math statistics.

The functionals related to the quality of the system control are obtained

in the analytic form. The statement that the optimal strategy of controlling

the system is a deterministic strategy is proved. Analytic form representation

for the function the absolute extremum of which is determined as the optimal

control strategy is obtained also.

An approach to the physical language, pointed out by Poincare in a philosophical work, is to link probability theory to arithmetic and thermodynamics. We follow this program in the part concerning a generalization of probability theory.

We consider certain spaces of functions on the circle, which naturally appear in harmonic analysis, and superposition operators on these spaces. We study the following question: which functions have the property that each their superposition with a homeomorphism of the circle belongs to a given space? We also study the multidimensional case.

We consider the spaces of functions on the m-dimensional torus, whose Fourier transform is p -summable. We obtain estimates for the norms of the exponential functions deformed by a C1 -smooth phase. The results generalize to the multidimensional case the one-dimensional results obtained by the author earlier in “Quantitative estimates in the Beurling—Helson theorem”, Sbornik: Mathematics, 201:12 (2010), 1811 – 1836.

We consider the spaces of function on the circle whose Fourier transform is p-summable. We obtain estimates for the norms of exponential functions deformed by a C1 -smooth phase.

Let k be a field of characteristic zero, let G be a connected reductive algebraic group over k and let g be its Lie algebra. Let k(G), respectively, k(g), be the field of k- rational functions on G, respectively, g. The conjugation action of G on itself induces the adjoint action of G on g. We investigate the question whether or not the field extensions k(G)/k(G)^G and k(g)/k(g)^G are purely transcendental. We show that the answer is the same for k(G)/k(G)^G and k(g)/k(g)^G, and reduce the problem to the case where G is simple. For simple groups we show that the answer is positive if G is split of type A_n or C_n, and negative for groups of other types, except possibly G_2. A key ingredient in the proof of the negative result is a recent formula for the unramified Brauer group of a homogeneous space with connected stabilizers. As a byproduct of our investigation we give an affirmative answer to a question of Grothendieck about the existence of a rational section of the categorical quotient morphism for the conjugating action of G on itself.

Let G be a connected semisimple algebraic group over an algebraically closed field k. In 1965 Steinberg proved that if G is simply connected, then in G there exists a closed irreducible cross-section of the set of closures of regular conjugacy classes. We prove that in arbitrary G such a cross-section exists if and only if the universal covering isogeny Ĝ → G is bijective; this answers Grothendieck's question cited in the epigraph. In particular, for char k = 0, the converse to Steinberg's theorem holds. The existence of a cross-section in G implies, at least for char k = 0, that the algebra k[G]G of class functions on G is generated by rk G elements. We describe, for arbitrary G, a minimal generating set of k[G]G and that of the representation ring of G and answer two Grothendieck's questions on constructing generating sets of k[G]G. We prove the existence of a rational (i.e., local) section of the quotient morphism for arbitrary G and the existence of a rational cross-section in G (for char k = 0, this has been proved earlier); this answers the other question cited in the epigraph. We also prove that the existence of a rational section is equivalent to the existence of a rational W-equivariant map T- - - >G/T where T is a maximal torus of G and W the Weyl group.