### Article

## Chern classes of reductive groups and an adjunction formula

In this paper, I construct noncompact analogs of the Chern classes of equivariant vector bundles over complex reductive groups. For the tangent bundle, these Chern classes yield an adjunction formula for the Euler characteristic of complete intersections in reductive groups. When a complete intersection is a curve, this formula gives an explicit answer for the Euler characteristic and the genus of the curve. An extension of these results to arbitrary spherical homogeneous spaces is outlined. This is the first step towards extension to the reductive case of the explicit answer given by D.Bernstein, Khovanskii and Kouchnirenko for the Euler characteristic of all complete intersections in the complex torus (C^*)^n.

Let $G$ be a connected reductive group acting on an irreducible normal algebraic variety $X$. We give a slightly improved version of Local Structure Theorems obtained by Knop and Timashev, which describe the action of some parabolic subgroup of $G$ on an open subset of $X$. We also extend various results of Vinberg and Timashev on the set of horospheres in $X$. We construct a family of nongeneric horospheres in $X$ and a variety $\Hor$ parameterizing this family, such that there is a rational $G$-equivariant symplectic covering of cotangent vector bundles $T^*\Hor \dashrightarrow T^*X$. As an application we recover the description of the image of the moment map of $T^*X$ obtained by Knop. In our proofs we use only geometric methods which do not involve differential operators.

We obtain an explicit presentation for the equivariant cobordism ring of a complete flag variety. An immediate corollary is a Borel presentation for the ordinary cobordism ring. Another application is an equivariant Schubert calculus in cobordism. We also describe the rational equivariant cobordism rings of wonderful symmetric varieties of minimal rank.

The present constitutes the lecture notes from a mini course at the Summer School ”Structures in Lie Representation Theory” from Bremen in August 2009.

The aim of these lectures is to describe algebraic varieties on which an algebraic group acts and the orbit structure is simple. The methods that will be used come from algebraic geometry, and representation theory of Lie algebras and algebraic groups.

We begin by presenting fundamental results on homogeneous varieties under (possibly non-linear) algebraic groups. Then we turn to the class of log homogeneous varieties, recently introduced in [7] and studied further in [8]; here the orbits are the strata defined by a divisor with normal crossings. In particular, we discuss the close relationship between log homogeneous varieties and spherical varieties, and we survey classical examples of spherical homogeneous spaces and their equivariant completions.

V. V. Batyrev constructed a family of Calabi–Yau hypersurfaces dual to the first Chern class in toric Fano varieties. Using this construction, we introduce a family of Calabi–Yau manifolds whose SU-bordism classes generate the special unitary bordism ring. We also describe explicit Calabi–Yau representatives for multiplicative generators of the SU-bordism ring in low dimensions.

A model for organizing cargo transportation between two node stations connected by a railway line which contains a certain number of intermediate stations is considered. The movement of cargo is in one direction. Such a situation may occur, for example, if one of the node stations is located in a region which produce raw material for manufacturing industry located in another region, and there is another node station. The organization of freight traﬃc is performed by means of a number of technologies. These technologies determine the rules for taking on cargo at the initial node station, the rules of interaction between neighboring stations, as well as the rule of distribution of cargo to the ﬁnal node stations. The process of cargo transportation is followed by the set rule of control. For such a model, one must determine possible modes of cargo transportation and describe their properties. This model is described by a ﬁnite-dimensional system of diﬀerential equations with nonlocal linear restrictions. The class of the solution satisfying nonlocal linear restrictions is extremely narrow. It results in the need for the “correct” extension of solutions of a system of diﬀerential equations to a class of quasi-solutions having the distinctive feature of gaps in a countable number of points. It was possible numerically using the Runge–Kutta method of the fourth order to build these quasi-solutions and determine their rate of growth. Let us note that in the technical plan the main complexity consisted in obtaining quasi-solutions satisfying the nonlocal linear restrictions. Furthermore, we investigated the dependence of quasi-solutions and, in particular, sizes of gaps (jumps) of solutions on a number of parameters of the model characterizing a rule of control, technologies for transportation of cargo and intensity of giving of cargo on a node station.