• A
  • A
  • A
  • ABC
  • ABC
  • ABC
  • А
  • А
  • А
  • А
  • А
Regular version of the site

Article

Manipulability of consular election rules

Social Choice and Welfare. 2019. Vol. 2. No. 52. P. 363-393.
Ianovski E., Wilson M. C.

The Gibbard–Satterthwaite theorem is a cornerstone of social choice theory, stating that an onto social choice function cannot be both strategy-proof and non-dictatorial if the number of alternatives is at least three. The Duggan–Schwartz theorem proves an analogue in the case of set-valued elections: if the function is onto with respect to singletons, and can be manipulated by neither an optimist nor a pessimist, it must have a weak dictator. However, the assumption that the function is onto with respect to singletons makes the Duggan–Schwartz theorem inapplicable to elections which necessarily select multiple winners. In this paper we make a start on this problem by considering rules which always elect exactly two winners (such as the consulship of ancient Rome). We establish that if such a consular election rule cannot be expressed as the union of two disjoint social choice functions, then strategy-proofness implies the existence of a dictator. Although we suspect that a similar result holds for k-winner rules for k>2k>2, there appear to be many obstacles to proving it, which we discuss in detail.