### Article

## Approximations to the solution of Cauchy problem for a linear evolution equation via the space shift operator (second-order equation example)

We present a general method of solving the Cauchy problem for a linear parabolic partial differential equation of evolution type with variable coefficients and demonstrate it on the equation with derivatives of orders two, one and zero. The method is based on the Chernoff approximation procedure applied to a specially constructed shift operator. It is proven that approximations converge uniformly to the exact solution.

The current state of methods of the solution of boundary problems of mechanics of continuous environments is characterized. It is noted that packages of applied programs applied in engineering practice are based on the methods leading to solutions of boundary problems in the form of massifs of numbers. As a shortcoming the im-possibility of a reliable assessment of an error of such decisions for the majority of complex engineering chal-lenges is noted. As the alternative is stated an essence of a fictitious canonic regions method. It is shown that its application leads to solutions of boundary problems not in the form of massifs of numbers, but in the form of the functions which are identically satisfying with to the differential equations of boundary problems. The main ad-vantage of the fictitious canonic regions method - high precision of received results and possibility of a reliable assessment of their error. The review of stages of development of the fictitious canonic regions method is executed. The review of the works devoted to its application for the solution of scientific and engineering problems is executed.

We study the proximity of the optimal value of the *m*-dimensional knapsack problem to the optimal value of that problem with the additional restriction that only one type of items is allowed to include in the solution. We derive exact and asymptotic formulas for the precision of such approximation, i.e. for the infinum of the ratio of the optimal value for the objective functions of the problem with the cardinality constraint and without it. In particular, we prove that the precision tends to 0.59136…/m if n→∞ and *m* is fixed. Also, we give the class of the worst multi-dimensional knapsack problems for which the bound is attained. Previously, similar results were known only for the case m=1.

We study the Cauchy problem for Fokker–Planck–Kolmogorov equations for finite measures with unbounded and degenerate coefficients. Sufficient conditions for the existence and uniqueness of solutions are given.

A model for organizing cargo transportation between two node stations connected by a railway line which contains a certain number of intermediate stations is considered. The movement of cargo is in one direction. Such a situation may occur, for example, if one of the node stations is located in a region which produce raw material for manufacturing industry located in another region, and there is another node station. The organization of freight traﬃc is performed by means of a number of technologies. These technologies determine the rules for taking on cargo at the initial node station, the rules of interaction between neighboring stations, as well as the rule of distribution of cargo to the ﬁnal node stations. The process of cargo transportation is followed by the set rule of control. For such a model, one must determine possible modes of cargo transportation and describe their properties. This model is described by a ﬁnite-dimensional system of diﬀerential equations with nonlocal linear restrictions. The class of the solution satisfying nonlocal linear restrictions is extremely narrow. It results in the need for the “correct” extension of solutions of a system of diﬀerential equations to a class of quasi-solutions having the distinctive feature of gaps in a countable number of points. It was possible numerically using the Runge–Kutta method of the fourth order to build these quasi-solutions and determine their rate of growth. Let us note that in the technical plan the main complexity consisted in obtaining quasi-solutions satisfying the nonlocal linear restrictions. Furthermore, we investigated the dependence of quasi-solutions and, in particular, sizes of gaps (jumps) of solutions on a number of parameters of the model characterizing a rule of control, technologies for transportation of cargo and intensity of giving of cargo on a node station.

Let k be a field of characteristic zero, let G be a connected reductive algebraic group over k and let g be its Lie algebra. Let k(G), respectively, k(g), be the field of k- rational functions on G, respectively, g. The conjugation action of G on itself induces the adjoint action of G on g. We investigate the question whether or not the field extensions k(G)/k(G)^G and k(g)/k(g)^G are purely transcendental. We show that the answer is the same for k(G)/k(G)^G and k(g)/k(g)^G, and reduce the problem to the case where G is simple. For simple groups we show that the answer is positive if G is split of type A_n or C_n, and negative for groups of other types, except possibly G_2. A key ingredient in the proof of the negative result is a recent formula for the unramified Brauer group of a homogeneous space with connected stabilizers. As a byproduct of our investigation we give an affirmative answer to a question of Grothendieck about the existence of a rational section of the categorical quotient morphism for the conjugating action of G on itself.

Let G be a connected semisimple algebraic group over an algebraically closed field k. In 1965 Steinberg proved that if G is simply connected, then in G there exists a closed irreducible cross-section of the set of closures of regular conjugacy classes. We prove that in arbitrary G such a cross-section exists if and only if the universal covering isogeny Ĝ → G is bijective; this answers Grothendieck's question cited in the epigraph. In particular, for char k = 0, the converse to Steinberg's theorem holds. The existence of a cross-section in G implies, at least for char k = 0, that the algebra k[G]G of class functions on G is generated by rk G elements. We describe, for arbitrary G, a minimal generating set of k[G]G and that of the representation ring of G and answer two Grothendieck's questions on constructing generating sets of k[G]G. We prove the existence of a rational (i.e., local) section of the quotient morphism for arbitrary G and the existence of a rational cross-section in G (for char k = 0, this has been proved earlier); this answers the other question cited in the epigraph. We also prove that the existence of a rational section is equivalent to the existence of a rational W-equivariant map T- - - >G/T where T is a maximal torus of G and W the Weyl group.