### Article

## Nontrivial stationary points of two-species self-structuring communities

The two-species model of self-structured stationary biological communities proposed by U. Dieckmann and R. Law is considered. A way of investigating the system of integro-differential equations describing the model equilibrium is developed, nontrivial stationary points are found, and constraints on the model parameter space resulting in similar stationary points are studied. The results are applied to a number of widely known biological scenarios

The collection presents the reports of the VII International Conference "Mathematical Biology and Bioinformatics" heldby the Institute of Mathematical Problems of Biology, Russian Academy of Sciences in Pushchino, Moscow Region, October 14–19, 2018, with the participation of the Scientific Council on Mathematical Biology and Bioinformatics, Russian Academy of Sciences. The conference was held with the financial support of the Russian Foundation for Basic Research (grant #18-07-20040).

This book constitutes the refereed proceedings of the 12th International Conference on Parallel Computational Technologies, PCT 2018, held in Rostov-on-Don, Russia, in April 2018.

The 24 revised full papers presented were carefully reviewed and selected from 167 submissions. The papers are organized in topical sections on high performance architectures, tools and technologies; parallel numerical algorithms; supercomputer simulation.

This work is devoted to the investigation of the thickness-height dependence of the freely molded dome. The series of simulations were produced by finite element method. The generalization of the simulation results allowed us to obtain an analytical thickness-height relation of the dome

The influence of different forms of housing cryobot speed and efficiency of movement them into the ice structures. The problems of cryobot to study the ice surface in Europe

This aim of this paper is the interpretation of the results of mechanical testing of materials to determine their properties under hot deformation. As an example, a simulation of rod stretching in superplasticity mode was considered. Comparing obtained data with the analytical solution was conducted.

We discuss the materials associated with the formation of chaotic bands on the ice surface on Europe, a satellite of Jupiter. There are suggestions as to their origin.

Analytically and numerically calculations according to the original effective algorithms for largescale acoustic-gravity wave perturbations in the chromosphere from sources at the level of the photosphere are analyzed. Limitations to the energy flux of acoustic-gravity waves from the photosphere through the chromosphere are formulated. Structure of a narrow region with elevated pressure at the resonance altitude where the horizontal phase wave velocity is equal to the sound velocity is examined.

The volume contains articles of scientific staff and faculty of the Department of Computer Science and Applied Mathematics and Scientific-Educational Center of computer modeling of unique buildings and complexes of Moscow State University of Civil Engineering (National Research University), devoted to actual problems of applied mathematics and computational mechanics.

A model for organizing cargo transportation between two node stations connected by a railway line which contains a certain number of intermediate stations is considered. The movement of cargo is in one direction. Such a situation may occur, for example, if one of the node stations is located in a region which produce raw material for manufacturing industry located in another region, and there is another node station. The organization of freight traﬃc is performed by means of a number of technologies. These technologies determine the rules for taking on cargo at the initial node station, the rules of interaction between neighboring stations, as well as the rule of distribution of cargo to the ﬁnal node stations. The process of cargo transportation is followed by the set rule of control. For such a model, one must determine possible modes of cargo transportation and describe their properties. This model is described by a ﬁnite-dimensional system of diﬀerential equations with nonlocal linear restrictions. The class of the solution satisfying nonlocal linear restrictions is extremely narrow. It results in the need for the “correct” extension of solutions of a system of diﬀerential equations to a class of quasi-solutions having the distinctive feature of gaps in a countable number of points. It was possible numerically using the Runge–Kutta method of the fourth order to build these quasi-solutions and determine their rate of growth. Let us note that in the technical plan the main complexity consisted in obtaining quasi-solutions satisfying the nonlocal linear restrictions. Furthermore, we investigated the dependence of quasi-solutions and, in particular, sizes of gaps (jumps) of solutions on a number of parameters of the model characterizing a rule of control, technologies for transportation of cargo and intensity of giving of cargo on a node station.

The problem of minimizing the root mean square deviation of a uniform string with clamped ends from an equilibrium position is investigated. It is assumed that the initial conditions are specified and the ends of the string are clamped. The Fourier method is used, which enables the control problem with a partial differential equation to be reduced to a control problem with a denumerable system of ordinary differential equations. For the optimal control problem in the l2 space obtained, it is proved that the optimal synthesis contains singular trajectories and chattering trajectories. For the initial problem of the optimal control of the vibrations of a string it is also proved that there is a unique solution for which the optimal control has a denumerable number of switchings in a finite time interval.

For a class of optimal control problems and Hamiltonian systems generated by these problems in the space *l *2, we prove the existence of extremals with a countable number of switchings on a finite time interval. The optimal synthesis that we construct in the space *l *2 forms a fiber bundle with piecewise smooth two-dimensional fibers consisting of extremals with a countable number of switchings over an infinite-dimensional basis of singular extremals.

This proceedings publication is a compilation of selected contributions from the “Third International Conference on the Dynamics of Information Systems” which took place at the University of Florida, Gainesville, February 16–18, 2011. The purpose of this conference was to bring together scientists and engineers from industry, government, and academia in order to exchange new discoveries and results in a broad range of topics relevant to the theory and practice of dynamics of information systems. Dynamics of Information Systems: Mathematical Foundation presents state-of-the art research and is intended for graduate students and researchers interested in some of the most recent discoveries in information theory and dynamical systems. Scientists in other disciplines may also benefit from the applications of new developments to their own area of study.

In this paper, we construct a new distribution corresponding to a real noble gas as well as the equation of state for it.