Article
Scheduling jobs with equal processing times on a single machine: minimizing maximum lateness and makespan
The following special case of the classical NP-hard scheduling problem (Formula presented.) is considered. There is a set of jobs (Formula presented.) with identical processing times (Formula presented.) for all jobs (Formula presented.). All jobs have to be processed on a single machine. The optimization criterion is the minimization of maximum lateness (Formula presented.). We analyze algorithms for the makespan problem (Formula presented.), presented by Garey et al. (SIAM J Comput 10(2):256–269, 1981), Simons (A fast algorithm for single processor scheduling. In: 19th Annual symposium on foundations of computer science (Ann Arbor, Mich., 1978, 1978) and Benson’s algorithm (J Glob Optim 13(1):1–24, 1998) and give two polynomial algorithms to solve the problem under consideration and to construct the Pareto set with respect to the criteria (Formula presented.) and (Formula presented.). The complexity of the presented algorithms is (Formula presented.) and (Formula presented.), respectively, where (Formula presented.) is the accuracy of the input-output parameters. © 2016 Springer-Verlag Berlin Heidelberg
The scheduling problem of minimizing total tardiness on a single machine is known to be NP-hard in the ordinary sense. In this paper, we consider the special case of the problem when the processing times p_j and the due dates d_j of the jobs are oppositely ordered: p_1 >= p_2>=...>=p_n and d_1.
This paper investigates the scheduling problems of a single serial-batching machine with independent setup time and deteriorating job processing times. With the assumption of deteriorating jobs, the job processing times are described by an increasing function of their starting times. All the jobs are first partitioned into serial batches and then processed on a single serial-batching machine. Before each batch is processed, an independent constant setup time is required. Two optimization algorithms are proposed to solve the problems of minimizing the makespan and the total number of tardy jobs, respectively. Specifically, for the problem of minimizing the total completion time, two special cases with the smallest and the largest number of batches are studied, and an optimization algorithm is also presented for the special case without setup time.
This is the first book on the U.S. presidential election system to analyze the basic principles underlying the design of the existing system and those at the heart of competing proposals for improving the system. The book discusses how the use of some election rules embedded in the U.S. Constitution and in the Presidential Succession Act may cause skewed or weird election outcomes and election stalemates. The book argues that the act may not cover some rare though possible situations which the Twentieth Amendment authorizes Congress to address. Also, the book questions the constitutionality of the National Popular Vote Plan to introduce a direct popular presidential election de facto, without amending the Constitution, and addresses the plan’s “Achilles’ Heel.” In particular, the book shows that the plan may violate the Equal Protection Clause from the Fourteenth Amendment of the Constitution. Numerical examples are provided to show that the counterintuitive claims of the NPV originators and proponents that the plan will encourage presidential candidates to “chase” every vote in every state do not have any grounds. Finally, the book proposes a plan for improving the election system by combining at the national level the “one state, one vote” principle – embedded in the Constitution – and the “one person, one vote” principle. Under this plan no state loses its current Electoral College benefits while all the states gain more attention of presidential candidates.
This chapter describes an economic model for independent job flow management in distributed computing environments with non-dedicated resources. The model is based on the concept of fair resource distribution between users and owners of computational nodes by means of economic mechanisms in a virtual organization. Scheduling is performed in cycles in accordance with dynamically updated schedules on local processor nodes. Schedule optimization is performed using dynamic programming methods using the set of criteria in accordance with the economic policy of the virtual organization.
This chapter describes an economic model for independent job flow management in distributed computing environments with non-dedicated resources. The model is based on the concept of fair resource distribution between users and owners of computational nodes by means of economic mechanisms in a virtual organization. Scheduling is performed in cycles in accordance with dynamically updated schedules on local processor nodes. Schedule optimization is performed using dynamic programming methods using the set of criteria in accordance with the economic policy of the virtual organization.
This work presents slot selection algorithms in economic models for independent job batch scheduling in distributed computing with non-dedicated resources. Existing approaches towards resource co-allocation and multiprocessor job scheduling in economic models of distributed computing are based on search of time-slots in resource occupancy schedules. The sought time-slots must match requirements of necessary span, computational resource properties, and cost. Usually such scheduling methods consider only suited variant of time-slot set. This work discloses a scheduling scheme that features multi-variant search. Two algorithms of linear complexity for search of alternative variants are proposed and compared. Having several optional resource configurations for each job makes an opportunity to perform an optimization of execution of the whole batch of jobs and to increase overall efficiency of scheduling.
In this work, we present slot selection algorithms for job batch scheduling in distributed computing with non-dedicated resources. Jobs are parallel applications and these applications are independent. Existing approaches towards resource co-allocation and parallel job scheduling in economic models of distributed computing are based on search of time-slots in resource occupancy schedules. The sought time-slots must match requirements of necessary span, computational resource properties, and cost. Usually such scheduling methods consider only one suited variant of time-slot set. This work discloses a scheduling scheme that features multi-variant search. Two algorithms of linear complexity for search of alternative variants are proposed. Having several optional resource configurations for each job makes an opportunity to perform an optimization of execution of the whole batch of jobs and to increase overall efficiency of scheduling.
A model for organizing cargo transportation between two node stations connected by a railway line which contains a certain number of intermediate stations is considered. The movement of cargo is in one direction. Such a situation may occur, for example, if one of the node stations is located in a region which produce raw material for manufacturing industry located in another region, and there is another node station. The organization of freight traffic is performed by means of a number of technologies. These technologies determine the rules for taking on cargo at the initial node station, the rules of interaction between neighboring stations, as well as the rule of distribution of cargo to the final node stations. The process of cargo transportation is followed by the set rule of control. For such a model, one must determine possible modes of cargo transportation and describe their properties. This model is described by a finite-dimensional system of differential equations with nonlocal linear restrictions. The class of the solution satisfying nonlocal linear restrictions is extremely narrow. It results in the need for the “correct” extension of solutions of a system of differential equations to a class of quasi-solutions having the distinctive feature of gaps in a countable number of points. It was possible numerically using the Runge–Kutta method of the fourth order to build these quasi-solutions and determine their rate of growth. Let us note that in the technical plan the main complexity consisted in obtaining quasi-solutions satisfying the nonlocal linear restrictions. Furthermore, we investigated the dependence of quasi-solutions and, in particular, sizes of gaps (jumps) of solutions on a number of parameters of the model characterizing a rule of control, technologies for transportation of cargo and intensity of giving of cargo on a node station.
Let k be a field of characteristic zero, let G be a connected reductive algebraic group over k and let g be its Lie algebra. Let k(G), respectively, k(g), be the field of k- rational functions on G, respectively, g. The conjugation action of G on itself induces the adjoint action of G on g. We investigate the question whether or not the field extensions k(G)/k(G)^G and k(g)/k(g)^G are purely transcendental. We show that the answer is the same for k(G)/k(G)^G and k(g)/k(g)^G, and reduce the problem to the case where G is simple. For simple groups we show that the answer is positive if G is split of type A_n or C_n, and negative for groups of other types, except possibly G_2. A key ingredient in the proof of the negative result is a recent formula for the unramified Brauer group of a homogeneous space with connected stabilizers. As a byproduct of our investigation we give an affirmative answer to a question of Grothendieck about the existence of a rational section of the categorical quotient morphism for the conjugating action of G on itself.
Let G be a connected semisimple algebraic group over an algebraically closed field k. In 1965 Steinberg proved that if G is simply connected, then in G there exists a closed irreducible cross-section of the set of closures of regular conjugacy classes. We prove that in arbitrary G such a cross-section exists if and only if the universal covering isogeny Ĝ → G is bijective; this answers Grothendieck's question cited in the epigraph. In particular, for char k = 0, the converse to Steinberg's theorem holds. The existence of a cross-section in G implies, at least for char k = 0, that the algebra k[G]G of class functions on G is generated by rk G elements. We describe, for arbitrary G, a minimal generating set of k[G]G and that of the representation ring of G and answer two Grothendieck's questions on constructing generating sets of k[G]G. We prove the existence of a rational (i.e., local) section of the quotient morphism for arbitrary G and the existence of a rational cross-section in G (for char k = 0, this has been proved earlier); this answers the other question cited in the epigraph. We also prove that the existence of a rational section is equivalent to the existence of a rational W-equivariant map T- - - >G/T where T is a maximal torus of G and W the Weyl group.