
Сначала для обыкновенного дифференциального уравнения весьма общего вида объясняется, как вычислять периодические и эллиптические асимптотики его решений при стремлении независимой переменной к бесконечности. Затем показывается, как эти асимптотики продлеваются в соответствующие асимптотические разложения. Наконец, эта техника применяется к пятому уравнению Пенлеве. Для него получены 2 семейства эллиптических асимптотик и четыре семейства степенно-периодических разложений. Все семейства двухпараметрические.
В статье рассматриваются вещественные автономные системы обыкновенных дифференциальных уравнений в окрестности невырожденной особой точки, у которых матрица линейной части имеет два чисто мнимых собственных значения, а остальные собственные значения лежат вне мнимой оси. Исследуется приводимость таких систем к псевдонормальной форме. Уточняется понятие резонанса, вводятся понятия устранимых и неустранимых резонансов. Доказывается, что для таких систем задача о конечно-гладкой эквивалентности решается по конечным отрезкам рядов Тейлора их правых частей.
С помощью Степенной геометрии мы получили все асимптотические разложения решений пятого уравнения Пенлеве следующих пяти типов: степенные, степенно-логарифмические, сложные, экзотические и полуэкзотические при всех значениях четырёх комплексных параметров уравнения. Они образуют 16 и 30 семейств в окрестности бесконечности и нуля соответственно. В окрестности неособой точки уравнения существуют 10 семейств разложений. Более 20 семейств являются новыми.
В данной работе рассматривается пятое уравнение Пенлеве, которое имеет 4 комплексных параметра α, β, γ, δ. Методами степенной геометрии ищутся асимптотические разложения его решений при x → ∞. При α≠0 найдено 10 степенных разложений с двумя экспоненциальными добавками каждое. Шесть из них - по целым степеням x (они были известны), и четыре по полуцелым (они новые). При α=0 найдено 4 однопараметрических семейства экспоненциальных асимптотик y(x) и 3 однопараметрических семейства сложных разложений x=x(y). Все экспоненциальные добавки, экспоненциальные асимптотики и сложные разложения найдены впервые. Также уточнена техника вычисления экспоненциальных добавок.
The main aim of the book is, naturally, to give students the fundamental notions and instruments in linear algebra. Linearity is the main assumption used in all fieldsof science. It gives a first approximation to any problem under study and is widely used in economics and other social sciences. One may wonder why we decided to write a book in linear algebra despite the fact that there are many excellent books such as [10, 11, 19, 27, 34]? Our reasons can be summarized as follows. First, we try to fit the course to the needs of the students in economics and the students in mathematics and informatics who would like to get more knowledge in economics. Second, we constructed all expositions in the book in such a way to help economics students to learn mathematics and the proof making in mathematics in a convenient and simple manner. Third, since the hours given to this course in economics departments are rather limited, we propose a slightly different way of teaching this course. Namely, we do not try to give all proofs of all theorems presented in the course. Those theorems which are not proved are illustrated via figures and examples, and we illustrated all notions appealing to geometric intuition. Those theorems which are proved are proved in a most accurate way as it is done for the students in mathematics. The main notions are always supported with economic examples. The book provides many exercises referring to pure mathematics and economics. The book consists of eleven chapters and five appendices. Chapter 1 contains the introduction to the course and basic concepts of vector and scalar. Chapter 2 introduces the notions of vectors and matrices, and discusses some core economic examples used throughout the book. Here we begin with the notion of scalar product of two vectors, define matrices and their ranks, consider elementary operations over matrices. Chapter 3 deals with special important matrices – square matrices and their determinants. Chapter 4 introduces inverse matrices. In Chap. 5 we analyze the systems of linear equations, give methods how to solve these systems. Chapter ends with the discussion of homogeneous equations. Chapter 6 discusses more general type of algebraic objects – linear spaces. Here the notion of linear independence of vectors is introduced, which is very important from economic point of view for it defines how diverse is the obtained information. We consider here the isomorphism of linear spaces and the notion of subspace. Chapter 7 deals with important case of linear spaces – the Euclidean ones. We consider the notion of orthogonal bases and use it to construct the idea of projection and, particularly, the least square method widely used in social sciences. In Chapter 8 we consider linear transformations, and all related notions such as an image and kernel of transformation. We also consider linear transformations with respect to different bases. Chapter 9 discusses eigenvalues and eigenvectors. Here we consider self-adjoint transformations, orthogonal transformations, quadratic forms and their geometric representation. Chapter 10 applies the concepts developed before to the linear production model in economics. To this end we use, particularly, Perron–Frobenius Theorem. Chapter 11 deals with the notion of convexity, and so-called separation theorems. We use this instrument to analyse the linear programming problem. We observe during the years of our teaching experience that induction argument creates some difficulties among students. So, we explain this argument in Appendix A. In Appendix B we discuss how to evaluate the determinants. In Appendix C we give a brief introduction to complex numbers, which are important for better understanding the eigenvalues of linear operators. In Appendix D we consider the notion of the pseudoinverse, or generalized inverse matrix, widely used in different economic applications. Each chapter endswith the number of problemswhich allowbetter understanding the issues considered. In Appendix E the answers and hints to solutions to the problems from previous chapters and appendices are given.
В данной работе рассматривается пятое уравнение Пенлеве. Методами степенной геометрии ищутся асимптотические разложения его решений при x → 0. Получено 27 семейств разложений решений уравнения. 19 из них получены из разложений решений шестого уравнения Пенлеве. Среди остальных 8 семейств одно было известно раньше, ещё одно может быть получено из разложения решения третьего уравнения Пенлеве. Новыми являются 3 семейства полуэкзотических разложений, 2 семейства сложных разложений и семейство степенно-логарифмических разложений.
В этой работе методами степенной геометрии находятся асимптотические разложения решений пятого уравнения Пенлеве при x 0 для всех значений его четырех комплексных параметров. Получено 30 семейств разложений решений уравнения; 22 из них получены из опубликованных разложений решений шестого уравнения Пенлеве; среди остальных восьми семейств одно было известно, еще два могут быть получены из разложений решений третьего уравнения Пенлеве. Новыми являются три семейства полуэкзотических и два семейства сложных разложений.
Сборник задач составлен в соответствии с программами курсов по математическому анализу и линейной алгебре для подготовки студентов, обучающихся по специальностям: менеджмент, соцология, государственное и муниципальное управление, психология, прикладная политология. Содержит задачи по следующим разделам: элементы векторной алгебры и аналитической геометрии, матрицы и определители, системы линейных уравнений, дифференциальное и интегральное исчисление функций одной переменной, дифференциальное исчисление функций нескольких переменных, двойные интегралы, простейшие обыкновенные дифференциальные уравнения.
Настоящая книга представляет собой своеобразный расширенный учебник по математической статистике. Данный учебник не ограничен рамками учебного стандарта или вузовской программы --- он предназначен всем, кто интересуется математикой вообще и, в частности, хочет узнать, что такое современная математическая статистика, какие задачи и какими методами она решает, какие результаты в ней уже накоплены, какие проблемы в ней сегодня актуальны; наконец, каковы ее истоки, какой путь она прошла и какие ученые были ее творцами. По замыслу авторов, книга простым и доступным языком рассказывает о математической статистике и одновременно обучает ей. Вся теория объясняется и иллюстрируется на интересных и тщательно подобранных примерах. Книга может служить и задачником, так как содержит большой список упражнений для самостоятельного решения, а также справочным пособием по математической статистике, а в некоторых аспектах --- и по теории вероятностей.
Книга будет интересна преподавателям, аспирантам и студентам естественных и технических вузов, в которых изучается математическая статистика, научным работникам, использующим в своей деятельности методы математической статистики, а также самому широкому кругу любителей математики.
Эта книга, написанная группой авторов под руководством академика И. М. Гельфанда — одного из крупнейших математиков XX века, призвана опровергнуть расхожее мнение о тригонометрии как скучном и непонятном разделе школьного курса математики. Читателю предлагается взглянуть на знакомый предмет по-новому. Изложение, сопровождающееся большим количеством задач, начинается «с нуля» и доходит до материала, выходящего довольно далеко за рамки школьной программы; тригонометрические формулы иллюстрируются примерами из физики и геометрии. Отдельная глава посвящена типичным приемам решения тригонометрических задач, предлагаемых на вступительных экзаменах в высшие учебные заведения. Книга будет незаменимым помощником для школьников старших классов, преподавателей, родителей и всех интересующихся математикой. Предыдущее издание вышло в 2010 году..
В статье рассматриваются вещественные автономные системы обыкновенных дифференциальных уравнений в окрестности невырожденной особой точки, у которых матрица линейной части имеет два чисто мнимых собственных значения, а остальные собственные значения лежат вне мнимой оси. Исследуется приводимость таких систем к псевдонормальной форме. Уточняется понятие резонанса, вводятся понятия устранимых и неустранимых резонансов. Доказывается, что для таких систем задача о конечно-гладкой эквивалентности решается по конечным отрезкам рядов Тейлора их правых частей.
В первой части пособия рассмотрены дополнительные вопросы теории вероятностей, необходимые для изучения математической статистики, и начальные сведения по математической статистике.
Во второй части пособия подробно изложены вопросы, связанные с решением одной из основных задач математической статистики - параметрической задачи. Приведено много примеров.
Рекомендуется всем студентам МИЭМа, изучающим математическую статистику.
Центр конъюнктурных исследований Института статистических исследований и экономики знаний НИУ ВШЭ представляет информационно-аналитический материал «Деловой климат в оптовой торговле в I квартале 2012 года», подготовленный в рамках Программы фундаментальных исследований НИУ ВШЭ на основе ежеквартальных конъюнктурных опросов руководителей около 3 тыс. торговых компаний, проводимых Федеральной службой государственной статистики.
Конъюнктурные обследования направлены на оперативное получение от предпринимателей в дополнение к официальным статистическим данным краткосрочных качественных оценок о состоянии бизнеса и основных тенденциях его динамики, особенностях функционирования хозяйствующих субъектов, их намерениях, степени адаптации к механизмам хозяйствования, сложившемся деловом климате, а также о важнейших факторах, лимитирующих их деятельность.
Программа обследования гармонизирована с соответствующими подходами, принятыми в странах ОЭСР, и базируется на Гармонизированной Европейской Системе обследований деловых тенденций.
Структура выборочной совокупности идентична структуре генеральной статистической совокупности. При этом объем выборки достаточен для получения необходимой точности оценок показателей на всех уровнях разработки по разделу ОКВЭД (раздел G).
В сборнике представлены тезисы докладов участников XVIII Международной студенческой конференции-школы-семинара «Новые информационные технологии», состоявшейся в мае 2010 года.
Сборник состоит из двух разделов. Первый раздел сборника включает пленарные доклады ведущих специалистов. Второй раздел содержит тезисы докладов студентов и аспирантов, учащихся техникумов и колледжей, участвовавших в работе школы-семинара.
В основе настоящего учебного пособия лежит специальный курс по выбору студента, прочитанный автором на механико - математическом факультете МГУ им. М.В. Ломоносова в 2010-2012 учебных годах. Пособие знакомит читателя с методом параметрикса и его дискретным аналогом, развитым в самое последнее время автором пособия и его коллегами-соавторами. Оно объединяет воедино материал, который ранее содержался только в ряде журнальных статей. Не стремясь к максимальной общности изложения, автор ставил целью продемонстрировать возможности метода при доказательстве локальных предельных теорем о сходимости марковских цепей к диффузионному процессу и при получении двусторонних оценок типа Аронсона для некоторых вырожденных диффузий.
В сборнике представлены тезисы докладов участников XIX Международной студенческой конференции-школы-семинара «Новые информационные технологии», состоявшейся в мае 2011 года.
Сборник состоит из двух разделов. Первый раздел сборника включает пленарные доклады ведущих специалистов. Второй раздел содержит тезисы докладов студентов и аспирантов, учащихся техникумов и колледжей, участвовавших в работе школы-семинара.