• A
  • A
  • A
  • АБB
  • АБB
  • АБB
  • А
  • А
  • А
  • А
  • А
Обычная версия сайта
Найдено 8 публикаций
Сортировка:
по названию
по году
Статья
Gelfand M. S. Frontiers in Microbiology. 2018. Vol. 9. P. 1-11.
Добавлено: 17 марта 2019
Статья
Суворова И., Gelfand M. S. Frontiers in Microbiology. 2019. Vol. 10. P. 1-18.

Aromatic compounds are a common carbon and energy source for many microorganisms, some of which can even degrade toxic chloroaromatic xenobiotics. This comparative study of aromatic metabolism in 32 Betaproteobacteria species describes the links between several transcription factors (TFs) that control benzoate (BenR, BenM, BoxR, BzdR), catechol (CatR, CatM, BenM), chlorocatechol (ClcR), methylcatechol (MmlR), 2,4-dichlorophenoxyacetate (TfdR, TfdS), phenol (AphS, AphR, AphT), biphenyl (BphS), and toluene (TbuT) metabolism. We characterize the complexity and variability in the organization of aromatic metabolism operons and the structure of regulatory networks that may differ even between closely related species. Generally, the upper parts of pathways, rare pathway variants, and degradative pathways of exotic and complex, in particular, xenobiotic compounds are often controlled by a single TF, while the regulation of more common and/or central parts of the aromatic metabolism may vary widely and often involves several TFs with shared and/or dual, or cascade regulation. The most frequent and at the same time variable connections exist between AphS, AphR, AphT, and BenR. We have identified a novel LysR-family TF that regulates the metabolism of catechol (or some catechol derivative) and either substitutes CatR(M)/BenM, or shares functions with it. We have also predicted several new members of aromatic metabolism regulons, in particular, some COGs regulated by several different TFs.

Добавлено: 31 октября 2019
Статья
Gannesen A. V., Zdorovenko E. L., Botchkova E. A. et al. Frontiers in Microbiology. 2019. Vol. 10:1284. P. 1-16.
Добавлено: 23 октября 2020
Статья
Bedenkov A., Shpinev V., Suvorov N. et al. Frontiers in Microbiology. 2016. Vol. 7. No. 294. P. 1-6.
Добавлено: 26 февраля 2016
Статья
Vladimir A. Korshun. Frontiers in Microbiology. 2018. Vol. 9. P. 868.
Добавлено: 8 ноября 2019
Статья
Kublanov I., et a., Gelfand M. S. et al. Frontiers in Microbiology. 2016. Vol. 8. P. 195-1-195-16.
Добавлено: 13 марта 2017
Статья
Tsoy O., Ravcheev D., Čuklina J. et al. Frontiers in Microbiology. 2016. Vol. 7. P. 1-14.

Biological nitrogen fixation plays a crucial role in the nitrogen cycle. An ability to fix atmospheric nitrogen, reducing it to ammonium, was described for multiple species of Bacteria and Archaea. The transcriptional regulatory network for nitrogen fixation was extensively studied in several representatives of the class Alphaproteobacteria. This regulatory network includes the activator of nitrogen fixation NifA, working in tandem with the alternative sigma-factor RpoN as well as oxygen-responsive regulatory systems, one-component regulators FnrN/FixK and two-component system FixLJ. Here we used a comparative genomics approach for in silico study of the transcriptional regulatory network in 50 genomes of Alphaproteobacteria. We extended the known regulons and proposed the scenario for the evolution of the nitrogen fixation transcriptional network. The reconstructed network substantially expands the existing knowledge of transcriptional regulation in nitrogen-fixing microorganisms and can be used for genetic experiments, metabolic reconstruction, and evolutionary analysis. © 2016 Tsoy, Ravcheev, Čuklina and Gelfand.

Добавлено: 12 ноября 2016
Статья
Gelfand M. S. Frontiers in Microbiology. 2018. Vol. 9. P. 1-11.
Добавлено: 17 марта 2019