• A
  • A
  • A
  • АБB
  • АБB
  • АБB
  • А
  • А
  • А
  • А
  • А
Обычная версия сайта

Статья

Новое доказательство результата о полном описании (n,n+2)-графов c максимальным значением индекса Хосойи

Индекс Хосойи – это важный топологический индекс графов, определяемый как количество их паросочетаний. На настоящее время для любых n и k∈{−1,0,1,2} полностью описаны все связные графы с n вершинами и n+k ребрами, имеющие максимальное значение индекса Хосойи среди всех таких графов (в случае k=2 при n≥15). В данной работе предлагается новое доказательство для случая k=2 при n≥17, основанное на разложении индекса Хосойи по подмножествам отделяющих вершин и порождаемых ими локальных заменах графов. Данный подход является новым для тематики поиска графов с экстремальным значением индекса Хосойи, где обычно используется ряд стандартных приемов. Новое доказательство более комбинаторное и короткое и менее техническое, чем оригинальное.