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Abstract—The Hosoya index is an important topological index of graphs defined as the number of
their matchings. At present, for any n and k ∈ {−1, 0, 1, 2}, all connected graphs with n vertices
and n+ k edges that have a maximum value of the Hosoya index among all such graphs have been
described (in the case k = 2 for n ≥ 15). This paper proposes a new proof for the case k = 2 for
n ≥ 17 based on a decomposition of the Hosoya index by subsets of separating vertices and local
graph transformations induced by them. This approach is new in the search for graphs with extreme
value of the Hosoya index, where many standard techniques are usually employed. The new proof is
more combinatorial, shorter, and less technical than the original proof.
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INTRODUCTION

Chemical compounds are often expressed in the form of molecular graphs in which atoms corre-
spond to vertices of the graph and connections between atoms correspond to edges of the graph. The
properties of chemical compounds are described in terms of topological indices that represent certain
graph invariants with respect to the re-notation of vertices and make analytical studies of certain aspects
of the chemical structure of substances possible.

In [1], the Japanese chemist Haruo Hosoya proposed a topological index, now called the Hosoya
index. By a graph matching we mean any set of pairwise nonadjacent edges of the graph. The Hosoya
index of a graph G is defined as the number of its matchings and is denoted by z(G). The empty set
of matchings is also regarded as a matching, and hence the Hosoya index of any graph (including the
null-graph, i.e., the graph with an empty set of vertices) is always positive. It was shown in [1] that
certain physico-chemical properties of alkanes (in particular, their boiling point) are related to the value
of the Hosoya index of their molecular graphs. Subsequently, it was discovered that there is a connection
between the Hosoya index and other physico-chemical properties of alkanes, and also the energy of
conjugate π-electronic systems; see the surveys [2]–[4].

Since topological indices determine the energy of chemical compounds, it is of interest to study the
problem of identifying graphs from given classes with the extreme (minimum or maximum) value of some
topological index. In the present paper, unless otherwise stated, only simple graphs, i.e., undirected,
unmarked graphs without loops and multiple edges, are considered.

A connected graph with n vertices and m edges is called an (n,m)-graph. It was proved in [5] that,
among (n, n− 1)-graphs, only the n-cycle has the maximal Hosoya index. It was shown in [6] that,
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among (n, n)-graphs, only the n-cycle has the maximal Hosoya index. In [7], [8], (n, n+ 1)-graphs
were considered, and there, for any n, all (n, n+ 1)-graphs with maximum value of the Hosoya index
were described. It was discovered that, for any n ≥ 10, the corresponding maximal graph is unique and
is obtained by connecting 4-cycles and (n − 4)-cycles by an edge. In [8], (n, n+ 2)-graphs were also
considered, and it was shown that, for n ≥ 15, the maximal graph is unique and isomorphic to the graph
shown in Fig. 1, where the dotted segment indicates a simple path of length n− 11.

Fig. 1. The unique extremal graph with n ≥ 15 vertices.

In this paper, we also consider the case of (n, n+ 2)-graphs for n ≥ 17. We propose a new proof
based on the decomposition of the Hosaya index by subsets of separating vertices and local graph
transformations induced by them. This approach is new in the search for graphs with extreme values
of the Hosoya index, where a number of standard techniques are usually employed. Among these
techniques, we note a proof of the absence of pendant vertices by using standard graph transformations,
the establishment of the form of the resulting graphs, their parametrization and the tuning of their
parameters by using standard cycle splitting, cycle rolling along a path or cycle, and the properties of
Fibonacci numbers. The new proof is more combinatorial, shorter, and less technical than the original
proof.

1. THE SYMBOLS USED

By Pn and Cn we denote a simple path and a cycle with n vertices, respectively. By P0 we denote
the null graph. Let us also indicate that by C2 we mean a multigraph with 2 vertices and an edge of
multiplicity two and by C1 we mean the pseudograph with 1 vertex and a self-loop. In particular,

z(C1) = z(P1) = z(P0) = 1, z(C2) = 3.

Let G be a graph, and let v ∈ V (G), V ′ ⊆ V (G), E′ ⊆ E(G). The degree of a vertex v is denoted
by degG(v), and its neighborhood by NG(v). The graphs G \ V ′ and G \ E′ are obtained from G by
removing all the vertices from V ′ and all the edges from E′, respectively.

Let G be a graph, and let e ∈ E(G). The equality

z(G) = z+(G, e) + z−(G, e),

where z+(G, e) and z−(G, e) is the number of matchings of G containing or not containing e, re-
spectively, will be called the decomposition of z(G) along the edge e. For example, using the
decomposition of the Hosoya index along the pendant edge of a simple path and along an arbitrary edge
of the cycle, it is not difficult to establish that, for any i ≥ 2,

z(Pi) = z(Pi−1) + z(Pi−2), z(Ci+1) = z(Ci) + z(Ci−1).

It readily follows that, for all i ≥ 0,

z(Pi) = Fi+1, z(Ci+3) = Fi+4 + Fi+2,

where F0 = 0, F1 = F2 = 1, Fi = Fi−1 + Fi−2, i ≥ 3, is the sequence of Fibonacci numbers. The use of
the edge decomposition of the Hosoya index is a known standard procedure.

Let A,B ⊆ V (G), and let A ∩B = ∅. By z(G,A,B) we denote the number of matchings of the
graph G, covering all vertices from A and not covering any vertices from B.
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2. CONTRACTIONS OF (n, n+ 2)-GRAPHS

A pseudo-graph G′ is called a contraction of an simple graph G if G is obtained by subdividing
the edges of G′, and G′ contains a minimum number of vertices. It is clear that there exists a unique
contraction of any simple graph. It is also clear that, for each connected graph G, other than a simple
cycle, we have

V (G′) = {v ∈ V (G) : degG(v) �= 2} ∀ v ∈ V (G′)[degG′(v) = degG(v)].

The concept of graph contraction turns out to be useful for describing all (n,m)-graphs without
pendant vertices for small values of m− n. Indeed, if (d1, . . . , dn) is the sequence of degrees of an
(n,m)-graph without pendant vertices, where d1 ≤ · · · ≤ dn, then d1 ≥ 2 and d1 + · · · + dn = 2m. For
small values of m− n, it is easy to enumerate all the relevant sequence of degreess. In particular, if
m = n+ 2, then only the following sequences are such sequences:

(2, . . . , 2, 6), (2, . . . , 2, 3, 5), (2, . . . , 2, 4, 4),

(2, . . . , 2, 3, 3, 4), (2, . . . , 2, 3, 3, 3, 3).

This makes it possible to enumerate all the contractions of (n, n + 2)-graphs without pendant vertices
(see Fig. 2).

Fig. 2. All types of contractions of (n, n+ 2)-graphs without pendant vertices.

It will be shown below that, for any m ≥ n, each maximal (n,m)-graph does not contain pendant
vertices, and some other properties of maximal (n,m)-graphs will also be formulated. This, in particular,
will make it possible to identify the contractions of precisely maximal (n, n+ 2)-graphs and adjust the
parameters (i.e., the number of subdivisions of edges) in them.

3. A LEMMA ON THE DECOMPOSITION OF THE HOSOYA INDEX
AND ITS COROLLARIES

Let G be a graph, and let H be its induced subgraph. Any subset S ⊆ V (H) such that no vertex
from V (G) \ V (H) is adjacent to any vertex from V (H) \ S, is called H-separating. Let S be an
H-separating set. By GS we denote the result of removing from G all elements of the set V (H) \ S
as well as all edges simultaneously incident to two vertices from S. The following statement is valid.

Lemma 1. The following equality holds:

z(G) =
∑

S′⊆S

z(GS , S
′, S \ S′) · z(H \ S′).
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Proof. Each matching of the graph G can be split into two parts, the matching of the graph GS and
the matching of the graph H . In the graph GS , the matching covers some subset S′ ⊆ S, but does
not cover the subset S \ S′. For any S′ ⊆ S, the number of such matchings of the graph G is equal
to z(GS , S

′, S \ S′) · z(H \ S′). Summing over all subsets of the set S, we obtain the number of all
matchings of the graph G.

Suppose that, in a graph G, vertices u and w, not necessarily distinct, are chosen. For k ≥ 1, by G(k)

we denote the graph obtained by adding to G a simple path (v1, . . . , vk) and edges v1u, vkw (see Fig. 3).
Let us point out that, in the case u = w, k = 1, the graph G(1) will be a multigraph with edge uv1 of
multiplicity 2.

Fig. 3. The graph G(k).

Let us rename G as G(0). The following statement is valid.

Corollary 1. For any k ≥ 2, the following equality holds:

z(G(k)) = z(G(k−1)) + z(G(k−2)).

Proof. Suppose that u �= w. For S = {u,w} and any p ≥ 1, by Lemma 1, we have

z(G(p)) =
∑

S′⊆S

z(G
(p)
S , S′, S \ S′) · Fk−|S′|+1.

Obviously, the graphs G
(0)
S , G

(1)
S , G

(2)
S , . . . are isomorphic to each other. Thus, for any S′ ⊆ S, we can

write

z(G
(0)
S , S′, S \ S′) = z(G

(1)
S , S′, S \ S′) = z(G

(2)
S , S′, S \ S′) = · · · .

For any i ≥ 2, we have z(Pi) = z(Pi−1) + z(Pi−2). Therefore, the assertion of the corollary holds if
u �= w.

If u = w, then, for S = {u}, the proof is carried out by analogy. The case k = 2 is considered
separately. For k ≥ 3, we use the equality

z(Ci) = z(Ci−1) + z(Ci−2),

which holds for all i ≥ 3. The proof of Corollary 1 is complete.

Suppose that graphs G1 and G2 contain induced subgraphs H1 and H2, and the following two
conditions hold:

1) some subset S ⊆ V (G1) ∩ V (G2) is simultaneously H1-separating and H2-separating;

2) the subgraphs G1
S and G2

S are isomorphic.

Thus, the equality

z(G1
S , S

′, S \ S′) = z(G2
S , S

′, S \ S′)

holds for any S′ ⊆ S. This fact and Lemma 1 imply the following statement.
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Corollary 2. Suppose that, for any subset S′ ⊆ S, the inequality z(H1 \ S′) ≤ z(H2 \ S′) holds
and, for some S̃′ ⊆ S,

z(H1 \ S′) < z(H2 \ S′), z(G1
S , S̃

′, S \ S̃′) �= 0.

Then the following inequality holds:

z(G1) < z(G2).

Corollary 2 turns out to be useful for proving the fact that a certain transformation increases the
Hosoya index. It will be used in the next section.

4. GRAPH THE TRANSFORMATIONS THAT INCREASE THE HOSOYA INDEX

We define several transformations that preserve connectivity, the number of vertices and edges, and
prove that, under certain conditions, they increase the Hosoya index.

4.1. Transformations of Induced Paths and Cycles

Let G be a graph with a simple path (v1, . . . , va), where

degG(va) ≥ 3, degG(va−1) = · · · = degG(v2) = 2, degG(v1) = 1.

The transformation I taking G to the graph G′ removes the edge vau, where u is an arbitrary element of
the set NG(va) \ {va−1}, and adds the edge uv1 (see Fig. 4).

Fig. 4. The transformation I.

Lemma 2. The following inequality holds: z(G′) > z(G).

Proof. To prove this lemma, we use Corollary 2 and its notation. We put

G1 = G, G2 = G′, V (H1) = V (H2) = {u, v1, . . . , va}, S = {va, u}.
The graphs G1

S and G2
S are isomorphic. Obviously, for any S′ ⊆ S, except S′ = {va}, the graph H1 \ S′

is isomorphic to the graph H2 \ S′. It is also obvious that

z(H2 \ {va}) = Fa+1 > Fa = z(H1 \ {va}).
Under the assumptions of the lemma, it is obvious that z(G1

S , {va}, S \ {va}) �= 0. Thus, by Corollary 2,
we have the inequality z(G′) > z(G).

If there is a leaf in some maximal (n,m)-graph, where m ≥ n„ then it contains an induced path from
the given leaf to a vertex of degree at least 3; in this leaf, all the interior vertices are of degree 2. Thus, the
following statement follows from Lemma 2.

Corollary 3. If m ≥ n, then each maximal (n,m)-graph does not contain pendant vertices.

Suppose that, in some graph G, there is an induced cycle (v1, . . . , va) in which all vertices, except
v1, have degree 2, degG(v1) ≥ 4, u ∈ NG(v1) \ {v2, va}. The transformation II takes G to the graph G′,
removing the edge uv1 and adding the edge uv2 (see Fig. 5).

Lemma 3. The inequality z(G′) > z(G) holds.
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Fig. 5. The transformation II.

Proof. To prove this lemma, we use Corollary 2 and its notation. We put G1 = G, G2 = G′, and let
H1 and H2 be the subgraphs of the graphs G1 and G2 induced by the vertices u, v1, . . . , va, respectively,
S = {v1, u}. The graphs G1

S and G2
S are isomorphic. Obviously, for any S′ ⊆ S, except S′ = {v1}, the

graph H1 \ S′ is isomorphic to the graph H2 \ S′. It is also obvious that

z(H1 \ {v1}) = Fa < Fa+1 = z(H2 \ {v1}).
Under the assumptions of the lemma, it is obvious that z(G1

S , {v1}, S \ {v1}) �= 0. Therefore, by
Corollary 2, we have the inequality z(G′) > z(G).

Corollary 4. Each maximal (n,m)-graph does not contain induced cycles in which only one
vertex of the cycle has degree at least 4 in the graph.

Note that some special cases of the transformations I and II are already known (for example, when G
has a special form); see, for example, transformations 1 and 3 from [8].

Fig. 6. The transformation III.

Let a ≥ 3 and b ≥ 1. Let G be an arbitrary graph in which there is an induced cycle (v1, . . . , va+b),
and all of its vertices, except v1 and va, have degree 2 in G. The transformation III takes G to the
graph G′, removing all the edges v1u, where u ∈ NG(v1) \ {v2, va+b}, adding edges va−1u, where
u ∈ NG(v1) \ {v2, va+b}, and also interchanging the names of the vertices v1 and va−1 (see Fig. 6).

To formulate the next lemma, we use the notation of Corollary 2. Put G1 = G, G2 = G′, H1 and H2

is the induced cycle (v1, . . . , va+b), S = {v1, va}.

Lemma 4. The following relation holds:

z(G′)− z(G) = Fa−2 · Fb · z(G1
S , S,∅).

Proof. The graphs G1
S and G2

S are isomorphic. Obviously, for any S′ ⊂ S, the graphs H1 \ S′ and
H2 \ S′ are isomorphic. It is also obvious that

z(H1 \ S) = Fa−1 · Fb+1, z(H2 \ S) = Fa+b−1.

Using the decomposition of the Hosoya index of the simple path (w1, . . . , wa+b−2) along the edge
wa−2wa−1, we obtain

Fa+b−1 = Fa−1 · Fb+1 + Fa−2 · Fb.

Therefore, by Lemma 1, we have

z(G′)− z(G) = Fa−2 · Fb · z(G1
S , S,∅).
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264 KUZ’MIN, MALYSHEV

If, under the assumptions of Lemma 4, the inequality z(G1
S , S,∅) �= 0 holds, then z(G′) > z(G).

Let a ≥ 2, b ≥ 2, and let G be an arbitrary graph in which there is an induced cycle (v1, . . . , va+b+1),
and all of its vertices, except v1, v2, va+2, have degree 2 in G. The transformation IV takes the graph G
to the graph G′, removing all the edges va+2u, where u ∈ NG(va+2) \ {va+1, va+3}, adding all the edges
v3u, where u ∈ NG(va+2) \ {va+1, va+3}, and also interchanging the names of the vertices v3 and va+2

(see Fig. 7).

Fig. 7. The transformation IV.

To formulate the next lemma, we use the notation of Corollary 2. Put G1 = G, G2 = G′, H1, and H2

is the induced cycle (v1, . . . , va+b+1), S = {v1, v2, va+2}. By analogy with the proof of Lemma 4, it is
easy to establish the validity of the following statement.

Lemma 5. The following relation holds:

z(G′)− z(G) = Fa−1 · Fb · z(G1
S , {v2, va+2}, S \ {v2, va+2})

− Fa−1 · Fb−2 · z(G1
S , {v1, va+2}, S \ {v1, va+2})

+ Fa−1 · Fb−1 · z(G1
S , S,∅).

From symmetry considerations, we can assume that

z(G1
S , {v2, va+2}, S \ {v2, va+2}) ≥ z(G1

S , {v1, va+2}, S \ {v1, va+2}),
since, otherwise, we can interchange the names of the vertices v1 and v2. Hence we have z(G′) ≥ z(G)
and the equality is achieved only if

z(G1
S , {v2, va+2}, S \ {v2, va+2}) = z(G1

S , {v1, va+2}, S \ {v1, va+2}) = 0.

4.2. The transformations of the Induced Subgraphs H∗
a,b,c

The graph H∗
a,b,c with a ≥ 3, b ≥ 3, c ≥ 2, is shown in Fig. 8.

Fig. 8. The graph H∗
a,b,c.

Recall that the notation Argmaxx∈D f(x) indicates the set of points of the domain D at which the
function f(x) takes its maximum value in this domain.

Lemma 6. The following assertions hold:

1) Argmax{i,j:xi �=yj} z(H
∗
a,b,c \ {xi, yj}) = {(2, b − 1), (a − 1, 2)};
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2) Argmaxi z(H
∗
a,b,c \ {xi}) = {2, a− 1}.

Proof. Let us prove assertion 1). Obviously, after deleting xi and yj , a forest is formed. By Lemma 2,
all the connected components of the given forest must be paths. Using the decomposition of the Hosoya
index of the path along the corresponding edge (possibly several times), it is not difficult to conclude that
the component must be unique. Hence H∗

a,b,c \ {xi, yj} must be a simple path, i.e.,

Arg max
{i,j:xi �=yj}

z(H∗
a,b,c \ {xi, yj}) = {(2, b− 1), (a − 1, 2)}.

Let us prove assertion 2). From symmetry considerations, we assume that xi is removed. We can
assume that i /∈ {1, a}, because, otherwise, H∗

a,b,c \ {xi} is a tree and

z(H∗ \ {xi}) < z(Pa+b+c−5), z(Pa+b+c−5) < z(H∗
a,b,c \ {x2}),

which can be verified by decomposing z(H \ {x2}) along the edge xa−1xa. Let us check that if
i /∈ {2, a− 1}, then

z(H∗
a,b,c \ {xi}) < z(H∗

a,b,c \ {x2}) = z(H∗
a,b,c \ {xa−1}).

We can assume that |i− 2| ≤ |i− (a− 1)|. Let us decompose z(H∗
a,b,c \ {xi}) along the edge x1x2 and

z(H∗
a,b,c \ {x2}) along the edge xixi+1:

z(H∗
a,b,c \ {xi}) = z(H∗

a,b,c \ {x2, . . . , xi}) · z(Pi−2) + z(H∗
a,b,c \ {x1, . . . , xi}) · z(Pi−3),

z(H∗
a,b,c \ {x2}) = z(H∗

a,b,c \ {x2, . . . , xi}) · z(Pi−2) + z(H∗
a,b,c \ {x2, . . . , xi+1}) · z(Pi−3).

The graph H∗
a,b,c \ {x1, . . . , xi} is a tree and, therefore,

z(H∗
a,b,c \ {x1, . . . , xi}) < z(Pa+b+c−i−4).

Decomposing z(H∗
a,b,c \ {x2, . . . , xi+1}) along the edge yb−1yb, we obtain

z(H∗
a,b,c \ {x2, . . . , xi+1}) > z(Pa+b+c−i−4).

Therefore, z(H∗
a,b,c \ {x2}) > z(H∗

a,b,c \ {xi}). Thus,

Argmax
i

z(H∗
a,b,c \ {xi}) = {2, a − 1}.

Suppose that, in a graph G, there is an induced subgraph H∗
a,b,c and

A = NG(xi) \ V (H∗
a,b,c) �= ∅.

Also suppose that, in V (H∗
a,b,c) \ {xi}, there is at most one vertex with neighbors outside V (H∗

a,b,c), and
if such a vertex exists, then it is the vertex yj �= xi. We put B = NG(yj) \ V (H∗

a,b,c). Also suppose that
i /∈ {2, a− 1}, if yj does not exist and that (i, j) /∈ {(2, b − 1), (a − 1, 2)}.

The transformation V takes G to the graph G′, removing all the edges xiv, v ∈ A and adding all
the edges x2v, v ∈ A, and also if yj exists, removing all the edges yjv, v ∈ B and adding all the edges
yb−1v, v ∈ B, and also interchanging the names of the vertices xi and x2, yj and yb−1 (see Fig. 9).

Lemma 7. The inequality z(G′) > z(G) holds.

Proof. We will consider the more general case of the existence of a vertex yj , while the proof for the first
case is carried out by analogy. From symmetry considerations, we can assume that i /∈ {2, a − 1}. To
prove this lemma, we use Corollary 2 and its notation. We putH1 = H2 = H∗

a,b,c. The set of S = {xi, yj}
is H1- and H2-separating in the graphs G1 = G and G2 = G′, and G1

S and G2
S are isomorphic. It is

not difficult to see that, for any S′ ∈ {{xi}, {yj}}, we have z(G1
S , S

′, S \ S′) �= 0. Hence, by virtue of
Corollary 2 and Lemma 6, we have the inequality z(G′) > z(G).
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Fig. 9. The transformation V.

Suppose that the graph G contains the induced subgraph H∗
4,b,2, where b �= 4, in which

NG(x2) = {v, x1, x3}, vx3 /∈ E(G), degG(v) ≥ 2,

and no element from V (H∗
4,b,2) \ {x2, x3} has any neighbor outside V (H∗

4,b,2). The transformation VI
takes the graph G′ to the graph G, removing the edges x2x3, x1x4 and adding the edges x1x3, x2x4 (see
Fig. 10).

Fig. 10. The transformation VI.

Lemma 8. The inequality z(G′) > z(G) holds.

Proof. To prove this lemma, we use Corollary 2 and its notation. We put

V (H1) = V (H2) = V (H∗
4,b,2) ∪ {v}.

The set of S = {v, x3} is H1- and H2-separating in the graphs G1 = G and G2 = G′ and, further, G1
S

and G2
S are isomorphic. Decomposing the Hosoya indices along the edges x2v, x1x4 ∈ E(H1) and

x2v, x2x4 ∈ E(H2), we obtain

z(H2) = z(H∗
4,b,2) + z(Cb+1) = z(H∗

4,b,2) + z(Pb+1) + z(Pb−1),

z(H1) = z(H∗
4,b,2) + z(Cb) + z(Pb−1) = z(H∗

4,b,2) + z(Pb) + z(Pb−1) + z(Pb−2),

z(H2 \ {v}) = z(H1 \ {v}) = z(H∗
4,b,2),

z(H2 \ {x3}) = z(Pb+2) + z(Pb−1),

z(H1 \ {x3}) = z(Pb+2) + 2z(Pb−2),

z(H2 \ S) = z(Pb+1) + z(Pb−1),

z(H1 \ S) = z(Pb+1) + z(Pb−2).

Thus, the following equalities hold:

z(H2)− z(H1) = Fb−2,

z(H2 \ {x3})− z(H1 \ {x3}) = −Fb−3,

z(H2 \ {v}) − z(H1 \ {v}) = 0,

z(H2 \ S)− z(H1 \ S) = Fb−2.
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It is clear that Fb−2 > Fb−3. Since vx3 /∈ E(G), degG(v) ≥ 2, it follows that z(G1
S ,∅, S) �= 0. Therefore,

by Corollary 2, we have z(G′) > z(G).

Apparently, the transformations III–VI are new.

4.3. The the transformations VII–IX and Their Meaning
Let a graph G contain an induced loop C = (v1, . . . , va), where a ≥ 5, NG(v2) = {v, v1, v3}, and no

vertex C, except v1, v2, v3, has any neighbor outside C. All four cases of the presence of the edges vv1
and vv3 in G are allowed. The transformation VII takes the graph G to the graph G′, removing the edges
vv2, v1va and adding the edges v1v4, vva (see Fig. 11).

Fig. 11. The transformation VII when vv1 /∈ E(G), vv3 /∈ E(G).

To formulate the next lemma, we use the notation of Corollary 2. We put

G1 = G, G2 = G′, V (H1) = V (H2) = {v, v1, . . . , va}, S = {v, v1, v3}.
Lemma 9. The following relation holds:

z(G′)− z(G) = Fa−4 · (z(G1
S ,∅, S)− z(G1

S , {v}, S \ {v}) − z(G1
S , {v1, v3}, S \ {v1, v3})).

Proof. The graphs G1
S and G2

S are isomorphic. Obviously, for any S′ ⊆ S, where {v, v1} ⊆ S′ or
{v, v3} ⊆ S′, the graph H1 \ S′ is isomorphic to the graph H2 \ S′. Also note that if S′ ⊆ S and vv1
or if vv3 is an edge of one of the graphs H1 \ S′ or H2 \ S′ (and, consequently, of the other one), then the
following equality holds:

z(H2 \ S′)− z(H1 \ S′) = z((H2 \ S′) \ {vv1, vv3})− z((H1 \ S′) \ {vv1, vv3}).
This is easy to verify by decomposing the Hosoya index along the edges vv1, vv3. Therefore, we can
assume that vv1 /∈ E(G) and vv3 /∈ E(G).

Decomposing the Hosoya indices along the edges v1v2 ∈ E(H1) and v1v4 ∈ E(H2), we obtain

z(H2) = z(Pa+1) + 2z(Pa−3),

z(H1) = z(Pa+1) + z(Pa−2),

z(H2 \ {v}) = z(Pa) + 2z(Pa−4),

z(H1 \ {v}) = z(Pa) + z(Pa−2),

z(H2 \ {v1, v3}) = z(Pa−2),

z(H1 \ {v1, v3}) = 2z(Pa−3).

Therefore, the following equalities are valid:

z(H2)− z(H1) = 2Fa−2 − Fa−1 = Fa−4,

z(H2 \ {v}) − z(H1 \ {v}) = 2Fa−3 − Fa−1 = −Fa−4,

z(H2 \ {v1, v3})− z(H1 \ {v1, v3}) = 2Fa−2 − Fa−1 = −Fa−4.

Hence, by Lemma 1, we have

z(G′)− z(G) = Fa−4 · (z(G1
S ,∅, S)− z(G1

S , {v}, S \ {v}) − z(G1
S , {v1, v3}, S \ {v1, v3})).
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It is not difficult to see that if NG(v) = {v2, v′} and degG(v
′) ≥ 2, then

z(G1
S ,∅, S) > z(G1

S , {v}, S \ {v}).
It is also clear that z(G1

S , {v1, v3}, S \ {v1, v3}) = 0 if

min(degG(v1),degG(v3)) = 2 ∨NG(v1) = {v2, va, u}, NG(v3) = {v2, v4, u}.
Therefore, if NG(v) = {v2, v′}, degG(v

′) ≥ 2, and

min(degG(v1),degG(v3)) = 2 ∨NG(v1) = {v2, va, u}, NG(v3) = {v2, v4, u},
then z(G′) > z(G).

Note that the transformation VII and the accompanying Lemma 9 are already known (see Lemma
2.1 from [8]), but the lemma was proved there by a purely technical method.

Suppose that the graph G contains the triangle (v1, v2, v3), in which

NG(v1) = {u, v2, v3}, degG(v2) = 2

and either NG(u) = {v1, u1}, u1v3 /∈ E(G), degG(u1) ≥ 2 or

degG(v3) = 2, NG(u) = {v1, u1, u2}, NG(u1) \ {u, u2} �= ∅.

The transformation VIII takes the graph G to the graph G′, removing the edge v1v3 and the edge uu2 (if
uu2 ∈ E(G)), and also adding the edges uv3 and v3u2 (if uu2 ∈ E(G)) (see Fig. 12).

Fig. 12. The transformation VIII when uu2 ∈ E(G), u1u2 /∈ E(G).

Lemma 10. The inequality z(G′) > z(G) holds.

Proof. To prove this lemma, we use Corollary 2 and its notation. First, consider the case where
NG(u) = {v1, u1}, u1v3 /∈ E(G), degG(u1) ≥ 2. We put

V (H1) = V (H2) = {u, v1, v2, v3}, S = {u, v3}.
The graphs G1

S and G2
S are isomorphic. The following relations hold:

z(H2) = 7, z(H1) = 6, z(H2 \ {u}) = 3, z(H1 \ {u}) = 4,

z(H2 \ {v3}) = z(H1 \ {v3}) = 3, z(H2 \ S) = z(H1 \ S) = 2.

Since degG(u) = 2, u1v3 /∈ E(G), degG(u1) ≥ 2, it follows that

z(G1
S ,∅, S) > z(G1

S , {u}, S \ {u}).
By Corollary 2, we have z(G′) > z(G).

Now consider the case where

degG(v3) = 2, NG(u) = {v1, u1, u2}, NG(u1) \ {u, u2} �= ∅.

We put

V (H1) = V (H2) = {u, u1, u2, v1, v2, v3}, S = {u1, u2}.
The graphs G1

S and G2
S are isomorphic. The following relations hold:

z(H2) = 15, z(H1) = 14 (u1u2 /∈ E(G)),
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z(H2) = 22, z(H1) = 20 (u1u2 ∈ E(G)),

z(H2 \ {u1}) = z(H1 \ {u1}) = z(H2 \ {u2}) = z(H1 \ {u2}) = 10,

z(H2 \ S) = 7, z(H1 \ S) = 6.

Since NG(u1) \ {u, u2} �= ∅, it follows that z(G1
S ,∅, S) �= 0. Combining this result with Corollary 2,

we obtain z(G′) > z(G).

Suppose that the graphG contains an induced cycle C = (v1, v2, v3, v4), where NG(v1) = {u, v2, v4},
NG(v2) = {w, v1, v3}, and no vertex ofC, except v1, v2„ has any neighbor outside C. The transformation
IX takes the graph G to the graph G′, removing the edge v2w and adding the edge uw (see Fig. 13).

Fig. 13. Conversion IX.

To formulate the next lemma, we use the notation of Corollary 2. We put

G1 = G, G2 = G′, V (H1) = V (H2) = {u,w, v1, v2, v3, v4}, S = {u,w}.

Lemma 11. The following relation holds:

z(G′)− z(G) = 2z(G1
S ,∅, S)− 3z(G1

S , {u}, S \ {u}).

Proof. The graphs G1
S and G2

S are isomorphic. For S′ ∈ {{w}, {u,w}}, the graphs H1 \ S′ and H2 \ S′

are isomorphic. The following relations hold:

z(H2) = 17, z(H1) = 15, z(H2 \ {u}) = 7, z(H1 \ {u}) = 10.

Therefore, by Lemma 1, we have the equality

z(G′)− z(G) = 2z(G1
S ,∅, S)− 3z(G1

S , {u}, S \ {u}).

If, under the assumptions of Lemma 11, it also turns out that G contains a simple path
(u1 = u, u2, u3, u4) in which

degG(u1) = degG(u2) = degG(u3) = 2, degG(u4) ≥ 2, w /∈ {u1, u2, u3, u4},
then

2z(G1
S ,∅, S)− 3z(G1

S , {u}, S \ {u})
= G \ (V (H1) ∪ {u1, u2, u3})−G \ (V (H1) ∪ {u1, u2, u3, u4}) > 0.

Apparently, the transformations VIII and IX are new.

5. AUXILIARY STATEMENT

The graph H∗
a , where a ≥ 1, is shown in Fig. 14.

Lemma 12. For any a ≥ 1, b ≥ 1, the following inequality holds:

z(H∗
1 ) · z(H∗

a+b−1) ≥ z(H∗
a) · z(H∗

b ),

where the equality is attained only for a = 1 or b = 1.
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Fig. 14. The graph H∗
a .

Proof. Let us prove the statement by induction on the sum k = a+ b. The cases a = 1 and b = 1,
obviously imply the equality. From symmetry considerations, we can assume that b ≥ a. The induction
base is k = 4, i.e., a = b = 2, k = 5, i.e., a = 2, b = 3, and k = 6, i.e., a = 2, b = 4 and a = 3, b = 3. In
this case,

z(H∗
1 ) = 7, z(H∗

2 ) = 10, z(H∗
3 ) = 17, z(H∗

4 ) = 27, z(H∗
5 ) = 44

and the inequalities hold. Suppose that the inequality holds for all a and b such that a+ b = k, and prove
that it will also hold for all a and b such that a+ b = k + 1.

Since a+ b = k+ 1 ≥ 7, it follows that b ≥ 4. By the induction hypothesis, the following inequalities
hold:

z(H∗
1 ) · z(H∗

a+b−2) > z(H∗
a) · z(H∗

b−1),

z(H∗
1 ) · z(H∗

a+b−3) > z(H∗
a) · z(H∗

b−2).

Adding together these inequalities and decomposing z(H∗
a+b−1) and z(H∗

b ) along the pendant edges, we
obtain

z(H∗
1 ) · z(H∗

a+b−1) = z(H∗
1 ) · z(H∗

a+b−2) + z(H∗
1 ) · z(H∗

a+b−3)

> z(H∗
a) · z(H∗

b ) = z(H∗
a) · z(H∗

b−1) + z(H∗
a) · z(H∗

b−2).

6. MAIN RESULT

Theorem 1. For any n ≥ 17, the only maximal (n, n+ 2)-graph is the graph shown in Fig. 1.

Proof. Recall that all types of contractions of (n, n+ 2)-graphs without pendant vertices were shown
in Fig. 1. Hence it follows from Corollaries 3 and 4, as well as from Lemma 7, that the cases from
the upper and middle rows are impossible. It follows from Lemmas 9 and 10 that the pendant cycles
in maximal (n, n+ 2)-graphs must have exactly 4 vertices. Let us denote by G an arbitrary maximal
(n, n+ 2)-graph.

Suppose that G contains an induced subgraph H∗
a,b,c and does not contain bridges. Then

degG(x1) = degG(xa) = 3 by Lemma 7. It is not difficult to see that G \ V (H∗
a,b,c) is a simple path or

the null graph. Therefore, by the same Lemma 7, we can assume that G is obtained from G \ V (H∗
a,b,c)

by adding the simple path (v1, . . . , vd) between x2 and yb−1 (i.e., v1 = x2, vd = yb−1) or between xi and
xj (i.e., v1 = xi, vd = xj), where i < j.

Let us consider the first case. Then, for each b ≥ 5, by Lemma 5, we have c = d = 2. If b = 4, then,
for d ≥ 3, a = 3, c = 2 for the same reason. By Lemma 5, we have

z((G \ {y3y4}) ∪ {y2y4}) = z(G),

which means, in view of Lemma 9, that G is not a maximal (n, n+ 2)-graph. The case b = 4, d = 2
is considered similarly. If b = 3, then, by analogy, it can be proved that, for a ≥ 4, we have c = d = 2.
In this way, G is obtained by subdivision of one or two nonadjacent edges of the complete graph with 4
vertices.

In the second case, by Lemma 4, we have j = i+ 1. Then a ≥ 4 and, by Lemma 4, c = 2. By
Lemmas 9 and 10, we see that if d �= 4, then i = 2, a = 4. Similarly, if b �= 4, then i = 2, a = 4. If
b = d = 4, then either (x1, . . . , xi) or (xi+1, . . . , xa) contains at least 7 vertices, because n ≥ 17. This
case is impossible in view of Lemma 11 and in view of the maximality of G. Hence G is obtained from
two cycles (v1, . . . , vd) and (y1, . . . , yb) by adding the edges v1u1 and vdyb.
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Suppose that G contains the induced subgraph H∗
a,b,c and the bridge incident to the vertex xi. Then

i = 2 by Lemma 7. If a ≥ 4, then b = 4, c = 2 by Lemmas 4, 9, and 10. Therefore, a ≥ 11 (because
n ≥ 17), which is impossible by Lemma 11 and in view of the maximality of G. Hence a = 3.

Suppose that G is obtained from the graphs H∗
a and H∗

b and the cycle (x1, . . . , xk) by adding the
edges xiva, where va ∈ V (H∗

a), and xjvb, where vb ∈ V (H∗
b ). From symmetry considerations, we can

assume that a ≥ b. Then k + a+ b = n− 6 ≥ 11. By Lemma 10, we have k �= 3. Hence j = i+ 1 by
Lemma 4. If k = 4, then a ≥ 4 and this case is impossible by Lemma 11. To show this, we note that

2z(H∗
a−1)− 3z(H∗

a−2) = 2z(H∗
a−3)− z(H∗

a−2) > 0, a ≥ 4.

If k ≥ 5, then a = b = 1 by Lemma 9.
It follows from our arguments that each maximal (n, n+ 2)-graph has one of the types A–E (see

Fig. 15) and only marked edges can be subdivided.

Fig. 15. The pseudographs A- E.

Denote by zn(A), . . . , zn(E) the maximum value of the Hosoya index in n-vertex type graphs
A, . . . , E, respectively. By Lemma 8, we have zn(B) > zn(C). Note that graphs of types A and D
are unique. We have

zn(A) = 3z(Cn−5) + 7(2z(Pn−6) + z(Cn−5)) = 10z(Cn−5) + 14z(Pn−6)

= 10z(Pn−5) + 14z(Pn−6) + 10z(Pn−7),

zn(D) = 3z(H∗
n−8) + 7(3z(Pn−9) + 7z(Cn−8))

= 3(z(Pn−5) + 2z(Pn−9)) + 21z(Pn−9) + 49(z(Pn−8) + z(Pn−10))

= 3z(Pn−5) + 49z(Pn−8) + 27z(Pn−9) + 49z(Pn−10).

Hence the following equalities hold:

z14(A) = 10 · 55 + 14 · 34 + 10 · 21 = 1236,

z15(A) = 10 · 89 + 14 · 55 + 10 · 34 = 2000,

z14(D) = 3 · 55 + 49 · 13 + 27 · 8 + 49 · 5 = 1263,

z15(D) = 3 · 89 + 49 · 21 + 27 · 13 + 49 · 8 = 2039.

Each n-vertex graph of type E is obtained by identifying the vertices va1 , va2 , va3 of the graphs H∗
a1 ,

H∗
a2 , H∗

a3 , where a1 + a2 + a3 = n− 7. We denote it by Ea1,a2,a3 . From symmetry considerations, we
assume that a1 ≥ a2 ≥ a3 ≥ 2. If a2 > 2, then we consider the graph Ea1+a2−2,2,a3 . Lemma 11 implies
that

z(Ea1+a2−2,2,a3) > z(Ea1,a2,a3);

To show this, it suffices to consider the decompositions z(Ea1+a2−2,2,a3) and z(Ea1,a2,a3) along the
pendant edge of the subgraphs H∗

a3 . Thus, among n-vertex graphs of type E, the graph En−11,2,2 has a
maximum value of the Hosoya index,.

We have
zn(E) = z(En−11,2,2) = 21z(H∗

n−12) + 7(3z(H∗
n−12) + 7z(H∗

n−11))

= 49z(H∗
n−11) + 42z(H∗

n−12)

= 49(z(Pn−8) + 2z(Pn−12)) + 42(z(Pn−9) + 2z(Pn−13))
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= 49z(Pn−8) + 42z(Pn−9) + 98z(Pn−12) + 84z(Pn−13).

Hence the following equalities hold:

z14(E) = 49 · 13 + 42 · 8 + 98 · 2 + 84 · 1 = 1253,

z15(E) = 49 · 21 + 42 · 13 + 98 · 3 + 84 · 2 = 2037.

By Corollary 1, we see that, for all k ≥ 0, the following identities hold:

z14+k+2(A) = z14+k+1(A) + z14+k(A),

z14+k+2(D) = z14+k+1(D) + z14+k(D),

z14+k+2(E) = z14+k+1(E) + z14+k(E).

In view of these identities and the inequalities

z14(D) > z14(E) > z13(A),

z15(D) > z15(E) > z15(A),

using Corollary 1, we can easily prove by induction the inequality

zn(D) > zn(E) > zn(A),

which holds for any n ≥ 14.

7. CONCLUSIONS

In this paper, we consider and solve the problem of finding all connected graphs with n vertices and
n+2 edges with maximum number of matchings among graphs with such parameters. Before this work,
the solution of this problem was already known, but it was obtained by using standard techniques. In the
present paper, the solution is obtained by using a new approach, which is based on the decomposition by
subsets of separating vertices. The new proof is shorter and more combinatorial than the original proof.

The corresponding problem for connected n-vertex graphs with n+3 edges is more complicated than
for (n, n+ 2)-graphs. Without computer calculations, even to obtain a complete enumeration of their
contractions seems to be a difficult problem. Therefore, it would be advisable to consider the restriction of
the problem to, for example, subcubic (n, n + 3)-graphs, where hopes for obtaining complete solutions
are much higher. This is a possible topic for future research.

The problem of enumerating perfect matchings was also investigated for other important classes of
graphs in, for example, [9], where the class of grid (lattice) graphs was studied..
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