Статья
The Program for Public Mood Monitoring through Twitter Content in Russia
With the popularization of social media, a vast amount of textual content with additional geo-located and time-stamped information is directly generated by human every day. Both tweet meaning and extended message information can be analyzed in a purpose of exploration of public mood variations within a certain time periods.
This paper aims at describing the development of the program for public mood monitoring based on sentiment analysis of Twitter content in Russian. Machine learning (naive Bayes classifier) and natural language processing techniques were used for the program implementation. As a result, the client-server program was implemented, where the server-side application collects tweets via Twitter API and analyses tweets using naive Bayes classifier, and the client-side web application visualizes the public mood using Google Charts libraries. The mood visualization consists of the Russian mood geo chart, the mood changes plot through the day, and the mood changes plot through the week. Cloud computing services were used in this program in two cases. Firstly, the program was deployed on Google App Engine, which allows completely abstracts away infrastructure, so the server administration is not required. Secondly, the data is stored in Google Cloud Datastore, that is, the highly-scalable NoSQL document database, which is fully integrated with Google App Engine.
В статье дается краткое введение в ансамбли классификаторов в машинном обучении и описывается алгоритм, повышающий качество классификации за счет рекомендации классификаторов объектам. Гипотеза, заложенная в основу алгоритма, состоит в том, что классификатор скорее правильно классифицирует объект, если он правильно предсказал метки соседей этого объекта из обучающей выборки. Автор иллюстрирует принцип алгоритма на простом примере и описывает тестирование на реальных данных.
В сборнике представлены тезисы докладов 12-й Международной конференции "Интеллектуализация обработки информации", проводимой Российской академией наук, Федеральным исследовательским центром "Информатика и управление" РАН, Научно-координационный центром "Цифровые методы интеллектуального анализа данных". Конференция проводится с 1989 г., начиная с 2000 г. - регулярно один раз в два года, и является представительным научным форумом в области интеллектуального анализа данных, машинного обучения, распознавания образов, анализа изображений, обработки сигналов, дискретного анализа. Организационный комитет ИОИ-2018 выражает особую благодарность компаниям Форексис и ЦСПиР, оказавшим неоценимую помощь при подготовке и проведении конференции. Конференция поддержана грантом РФФИ 18-07-20075. Сайт конференции http://mmro.ru.
Статья посвящена обзору современных тематик и актуальных направлений компьютерной лингвистики на основе анализа материалов одной из конференции в этой области, а именно, 24-ой Международная конференция по компьютерной лингвистике Coling2012. В ней приводится анализ основных подходов и проблемных точек в таких традиционных областях автоматической обработки текста, как автоматический морфологический и синтаксический анализ, машинный перевод и др. Также подробно рассматриваются современные задачи автоматического извлечения информации из текста такие, как извлечение фактов, извлечения мнений, анализ контента на основе привлечения онтологических ресурсов Веба. Делается вывод о том, что для современного уровня развития компьютерной лингвистики характерно вовлечение все более сложных уровней лингвистического анализа в сферу автоматического анализа, применение гибридных подходов в решении задач компьютерной обработки текстов, совмещающих машинное обучение и алгоритмические методы. При этом уровни сложности современных задач обработки текстов, таких как извлечение временной референции в тексте, анализ структуры дискурса и многие другие, требуют активного привлечения экспертных лингвистических знаний.
Определение тональности документов (субъективной оценки автора текста) возникает в различных предметных областях, таких как социологические и маркетинговые исследования, разработка рекомендательных систем и т.д. В данной работе рассматривается задача извлечения оценочных слов. Наличие лексикона оценочных слов может упростить задачу извлечения мнений из текстовых данных, и потому выделение оценочных слов из текстов является одним из ключевых направлений исследований в области анализа мнений (Sentiment Analysis). В работе рассматриваются методы извлечения слов, основанные на использовании корпуса текстов, которые позволяют создавать различные списки слов для различных предметных областей. Полученные при помощи сравниваемых методов списки оценочных слов использовались в качестве признаков описания данных, подаваемых на вход различным алгоритмам машинного обучения, определяющим тональность текстов. Эксперименты показали, что использование оценочных слов в некоторых случаях позволяет снизить ошибку классификации на 20%, но что сами по себе оценочные слова не являются достаточными для решения этой задачи и должны быть использованы только в комбинации с другими признаками.
В настоящей статье представлены результаты оригинального исследования возможностей сентимент-анализа брендов как нового современного инструмента маркетинговых исследований. Авторы проанализировали упоминания о бренде iPad в российских журналистских блогах и микроблогах платформы Twitter. Предложен обобщенный алгоритм проведения сентимент-анализа брендов, состоящий из набора методов и рекомендаций по оценке и аналитической обработке данных в рамках рассматриваемой методологии.
Содержание статьи.
• Введение, или почему блогосфера становится полем для сбора маркетинговой информации • Что такое сентимент-анализ: категоризация основных подходов • Мировая практика проведения сентимент-анализа брендов в блогосфере • Трудности при проведении сентимент-анализа брендов • Описание исследования • Основные результаты исследования, выводы и рекомендации • Ограничения и направления будущих исследованийЖурналы событий, сохраняемые современными информационными и техническими системами, как правило, содержат достаточно данных для автоматизированного восстановления моделей соответствующих процессов. Разработано множество алгоритмов для построения моделей процессов, проверки соответствия фактического поведения системы модельному, сравнения моделей процессов, и т.д. Однако возможность быстрого анализа выбираемых пользователями частей журнала до сих пор не нашла полноценной реализации. В статье описан метод многомерного хранения журналов событий для извлечения и анализа процессов, основанный на подходе ROLAP. Результатом анализа журнала является направленный невзвешенный граф, представляющий собою сумму возможных последовательностей событий, упорядоченных по вероятности их возникновения с учетом заданных условий. Разработанный инструмент позволяет выполнять совместный анализ моделей подпроцессов, восстановленных из частей журнала путем задания критериев отбора событий и требуемого уровня детализации модели.
В монографии приведены результаты исследования, посвященного управлению жизненным циклом информационных систем, а также анализу стандартов, сводов знаний и корпоративных методик, использующихся в ИТ-проектах. Приведены характеристики фаз ЖЦИС из практики управления ИТ-проектами, а также практические рекомендации по управлению такими проектами. Книга предназначена для научных работников, сотрудников научно- технических предприятий и работников государственных органов управлений, а также студентов, аспирантов, слушателей бизнес-школ повышения квалификации и переподготовки кадров. Книга содержит практические рекомендации для руководителей ИТ-проектов, а также сотрудников компаний, занимающихся проектной деятельностью в области ИТ-проектов.
The geographic information system (GIS) is based on the first and only Russian Imperial Census of 1897 and the First All-Union Census of the Soviet Union of 1926. The GIS features vector data (shapefiles) of allprovinces of the two states. For the 1897 census, there is information about linguistic, religious, and social estate groups. The part based on the 1926 census features nationality. Both shapefiles include information on gender, rural and urban population. The GIS allows for producing any necessary maps for individual studies of the period which require the administrative boundaries and demographic information.
В данной работе рассматривается пятое уравнение Пенлеве, которое имеет 4 комплексных параметра. Методами степенной геометрии ищутся асимптотические разложения его решений в окрестности его неособой точки z=z0, z0≠0, z0≠∞, при любых значениях параметров уравнения. Показано, что имеется ровно 10 семейств разложений решений уравнения. Все они - по целым степеням локальной переменной z - z0. Из них одно новое; у него произвольный коэффициент при четвертой степени локальной переменной. Одно из семейств однопараметрическое, остальные - двухпараметрические. Доказано, что все разложения сходятся в окрестности (а являющиеся полюсами - в проколотой окрестности) точки z=z0.
В учебном пособии рассматриваются базовые вопросы компьютерной лингвистики: от теории лингвистического и математического моделирования до вариантов технологических решений. Дается лингвистическая интерпретация основных лингвистических объектов и единиц анализа. Приведены сведения, необходимые для создания отдельных подсистем, отвечающих за анализ текстов на естественном языке. Рассматриваются вопросы построения систем классификации и кластеризации текстовых данных, основы фрактальной теории текстовой информации.
Предназначено для студентов и аспирантов высших учебных заведений, работающих в области обработки текстов на естественном языке.
В данной работе рассматривается пятое уравнение Пенлеве, которое имеет 4 комплексных параметра α, β, γ, δ. Методами степенной геометрии ищутся асимптотические разложения его решений при x → ∞. При α≠0 найдено 10 степенных разложений с двумя экспоненциальными добавками каждое. Шесть из них - по целым степеням x (они были известны), и четыре по полуцелым (они новые). При α=0 найдено 4 однопараметрических семейства экспоненциальных асимптотик y(x) и 3 однопараметрических семейства сложных разложений x=x(y). Все экспоненциальные добавки, экспоненциальные асимптотики и сложные разложения найдены впервые. Также уточнена техника вычисления экспоненциальных добавок.
В данной работе рассматривается пятое уравнение Пенлеве. Методами степенной геометрии ищутся асимптотические разложения его решений при x → 0. Получено 27 семейств разложений решений уравнения. 19 из них получены из разложений решений шестого уравнения Пенлеве. Среди остальных 8 семейств одно было известно раньше, ещё одно может быть получено из разложения решения третьего уравнения Пенлеве. Новыми являются 3 семейства полуэкзотических разложений, 2 семейства сложных разложений и семейство степенно-логарифмических разложений.
Труды содержат доклады, представленные учеными из России, Украины, Белоруссии, Казахстана, Эстонии, Узбекистана, Германии, Польши, посвященные актуальным проблемам радиационной физики твердого тела (влияние радиации на физико-химические свойства и структуру металлических, полупроводниковых и диэлектрических материалов, влияние факторов космического пространства на свойства конструкционных и функциональных материалов и покрытий космических аппаратов, радиационно-технологические методы получения материалов, в частности наноматериалов, модифицирования и обработки материалов с целью улучшения их эксплуатационных свойств, создание и получение экологически чистых материалов с низкой наведенной радиоактивностью и др.).
Труды содержат доклады, представленные специалистами из России, Украины, Белорусии, Казахстана, Узбекистана, Германии, Великобритании, Польши по направлениям:«Радиационная физика металлов», «Радиационная физика неметаллических материалов», «Физические основы радиационной технологии» и посвященные разнообразным проблемам радиационной физики твердого тела (процессы прохождения заряженных и нейтральных частиц, рентгеновского и гамма-излучений через вещество, электрон-атомные, атом-атомные, ион-атомные и др. столкновения в твердых телах, ориентационные явления при взаимодействии высокоэнергетических частиц с твердым телом, радиационно-индуцированные и радиационно-стимулированные явления в твердых телах и др.).