• A
  • A
  • A
  • АБB
  • АБB
  • АБB
  • А
  • А
  • А
  • А
  • А
Обычная версия сайта

Статья

СРАВНЕНИЕ МЕТОДОВ ИСКУССТВЕННОЙ ГЕНЕРАЦИИ ДАННЫХ ДЛЯ ГЛУБОКОГО ОБУЧЕНИЯ СИСТЕМЫ МОНИТОРИНГА

Петровский Д. В., Соболевский В. А.

В данной статье рассматривается проблема генерации входных данных при создании и обучении искусственной нейронной сети, являющейся основой модуля классификации динамической системы мониторинга показателей функционирования производства. Входные данные, которые были использованы для обучения нейронной сети, были разделены на следующие категории: реальные данные, сгенерированные данные по заданному распределению и данные, полученные с использованием подхода имитационного моделирования. Имитационная модель была создана с применением аппарата сетей Петри. Далее, для данных, применяемых в работе, были заданы правила классификации, после чего искусственная нейронная сеть была обучена на каждом наборе данных. На следующем шаге на вход системе мониторинга были поданы реальные данные, которые ранее не фигурировали в обучении и валидации нейронных сетей. Конечным этапом данного исследования стало сравнение результатов классификации описанных подходов искусственной генерации значений входных параметров предприятия относительно контрольного набора данных