Статья
On the energy dissipative spatial discretization of the barotropic quasi-gasdynamic and compressible Navier-Stokes systems of equations in polar coordinates
We deal with the 1d shallow water system of equations and exploit its special parabolic regularization satisfying the energy balance law. We construct a three-point symmetric in space discretization such that the discrete energy balance law holds and check that it is well-balanced. The results of numerical experiments for the associated explicit finite-difference scheme are also given for several known tests to confirm its reliability and some advantages. The practical error behavior is also analyzed.
For the quasi-gasdynamic system of equations, there holds the law of nondecreasing entropy. Difference methods based on this system have been successfully used in numerous applications and test gasdynamic computations. In theoretical terms, however, for standard spatial discretizations of this system, the nondecreasing entropy law does not hold exactly even in the one-dimensional case because of the mesh imbalance terms. For the quasi-gasdynamic equations, a new conservative spatial discretization is proposed for which the entropy balance equation has an appropriate form and the entropy production is guaranteed to be nonnegative (which also holds in the presence of body forces and heat sources). An important element of this discretization is that it makes use of nonstandard space-averaging techniques, including a nonlinear "logarithmic" averaging of the density and internal energy. The results hold on arbitrary nonuniform meshes
Рассматриваются явные двухслойные по времени и симметричные трехточечные по пространству разностные схемы для системы уравнений одномерной баротропной газовой динамики. Схемы основаны на специальных квазигазо/гидродинамических регуляризациях этой системы. Для линеаризованных на постоянном решении схем выводятся необходимое условие типа фон Неймана и критерий слабой консервативности задачи Коши по начальным данным в пространстве суммируемых с квадратом функций. Выполнено их сравнение между собой и с полученным ранее достаточным условием, в том числе посредством численных экспериментов для исходной нелинейной системы газовой динамики.
Для квазигазодинамической системы уравнений справедлив закон неубывания полной энтропии. Основанные на ней разностные методы хорошо зарекомендовали себя в многочисленных практических и тестовых газодинамических расчетах.
Вместе с тем в теоретическом плане для стандартных дискретизаций по пространству этой системы даже в одномерном случае не удается получить точное выполнение этого закона из-за возникновения сеточных дисбалансных слагаемых.
Предлагается новая консервативная дискретизация по пространству квазигазодинамической системы уравнений, для которой уравнение баланса энтропии имеет надлежащий вид и гарантирована неотрицательность производства энтропии (что имеет место и при наличии как массовой силы, так и теплового источника).
Важным элементом этой дискретизации является использование нестандартных усреднений по пространству, включая нелинейные “логарифмические” усреднения плотности и внутренней энергии.
Результаты верны на произвольной неравномерной сетке.
Работа посвящена численному моделированию спирально-вихревых структур во вращающихся газовых дисках в рамках простой модели двумерных нестационарных баротропных уравнений Эйлера с массовой силой и указывает на возможность чисто гидродинамической основы формирования и эволюции таких структур. Выводятся новые аксиально симметричные стационарные решения уравнений, модифицирующие известные приближенные решения. Эти решения с малыми возмущениями используются как начальные данные в нестационарной задаче, для решения которой демонстрируется образование рукавов плотности с их раздвоением и анализируется перераспределение углового момента. Дополнительно подтверждается корректность лабораторных экспериментов с мелкой водой для описания формирования крупных вихревых структур в тонких газовых дисках. Расчеты основаны на специальной КГД регуляризации уравнений Эйлера в полярных координатах.
Рассматриваются пространства функций на окружности, естественным образом возникающие в гармоническом анализе, и операторы замены переменной (суперпозиции с гомеоморфизмами окружности) в этих пространствах. В работе рассматривается вопрос о том, какие функции обладают тем свойством, что любая их суперпозиция с гомеоморфизмом принадлежит заданному пространству. Рассмотрен также многомерный случай.
Рассматриваются пространства функций на m -мерном торе, преобразование Фурье которых p -суммируемо. Получены оценки норм экспонент деформированных посреством C1 -гладкой фазовой функции. Результаты являются распространением на многомерный случай оценок, полученных автором ранее для одномерного случая в работе «Количественные оценки в теоремах типа теоремы Берлинга--Хелсона» Математический сборник, 201:12 (2010), 103-130.
Рассматриваются пространства функций на окружности таких, что их преобразование Фурье является p-суммируемым. Получены оценки норм экспонент, деформированных посредством C1 -гладкой фазовой функции.
Труды содержат доклады, представленные учеными из России, Украины, Белоруссии, Казахстана, Эстонии, Узбекистана, Германии, Польши, посвященные актуальным проблемам радиационной физики твердого тела (влияние радиации на физико-химические свойства и структуру металлических, полупроводниковых и диэлектрических материалов, влияние факторов космического пространства на свойства конструкционных и функциональных материалов и покрытий космических аппаратов, радиационно-технологические методы получения материалов, в частности наноматериалов, модифицирования и обработки материалов с целью улучшения их эксплуатационных свойств, создание и получение экологически чистых материалов с низкой наведенной радиоактивностью и др.).
Труды содержат доклады, представленные специалистами из России, Украины, Белорусии, Казахстана, Узбекистана, Германии, Великобритании, Польши по направлениям:«Радиационная физика металлов», «Радиационная физика неметаллических материалов», «Физические основы радиационной технологии» и посвященные разнообразным проблемам радиационной физики твердого тела (процессы прохождения заряженных и нейтральных частиц, рентгеновского и гамма-излучений через вещество, электрон-атомные, атом-атомные, ион-атомные и др. столкновения в твердых телах, ориентационные явления при взаимодействии высокоэнергетических частиц с твердым телом, радиационно-индуцированные и радиационно-стимулированные явления в твердых телах и др.).
Настоящая книга представляет собой своеобразный расширенный учебник по математической статистике. Данный учебник не ограничен рамками учебного стандарта или вузовской программы --- он предназначен всем, кто интересуется математикой вообще и, в частности, хочет узнать, что такое современная математическая статистика, какие задачи и какими методами она решает, какие результаты в ней уже накоплены, какие проблемы в ней сегодня актуальны; наконец, каковы ее истоки, какой путь она прошла и какие ученые были ее творцами. По замыслу авторов, книга простым и доступным языком рассказывает о математической статистике и одновременно обучает ей. Вся теория объясняется и иллюстрируется на интересных и тщательно подобранных примерах. Книга может служить и задачником, так как содержит большой список упражнений для самостоятельного решения, а также справочным пособием по математической статистике, а в некоторых аспектах --- и по теории вероятностей.
Книга будет интересна преподавателям, аспирантам и студентам естественных и технических вузов, в которых изучается математическая статистика, научным работникам, использующим в своей деятельности методы математической статистики, а также самому широкому кругу любителей математики.