Статья
Регулярные аттракторы автономных и неавтономных динамических систем
Изучаются регулярные глобальные аттракторы динамических систем, которые соответствуют диссипативным эволюционным уравнениям и их неавтономным возмущениям. Доказано, что при малом неавтономном возмущении автономной динамической системы (полугруппы), имеющей регулярный аттрактор, получающаяся неавтономная динамическая система (процесс) также имеет регулярный неавтономный аттрактор. При этом симметричное хаусдорфово отклонение возмущенных аттракторов от невозмущенных оценивается сверху величиной $O(\varepsilon ^{\varkappa }),$ где $\varepsilon $ -- параметр возмущения, $0<\varkappa <1$. Полученные результаты применяются к волновым уравнениям со слабой диссипацией в ограниченной области $\mathbb{R}^{3},$ которые возмущаются внешними силами, зависящими от времени.
Оптимальное оценивание параметров динамических систем, к которым относится летательные аппараты, в значительной степени чувствительно к полноте структуры модели, точности априорных данных оцениваемых параметров, выбранного метода идентификации. В работе для повышения устойчивости нелинейного оценивания параметров динамических систем предложен дискретно-непрерывный метод оптимального оценивания с зональной регуляризацией.
В работе получены необходимые и достаточные условия включения в топологический поток диффеоморфизмов Морса-Смейла без гетероклинически пересечений инвариантных многообразий седловых периодических точек, заданных на многообразии размерности три и выше.
Изучаются регулярные глобальные аттракторы диссипативных динамических полугрупп с дискретным или непрерывным временем, а также исследуются аттракторы неавтономных возмущений таких полугрупп. Доказана основная теорема о сохранении регулярности аттракторов при малых неавтономных возмущениях. Кроме того, неавтономный регулярный аттрактор остается экспоненциальным и робастным. Полученные результаты применяются к модельным неавтономным системам реакции-диффузии в ограниченной области R^3 с зависящими от времени внешними силами.
В статье продолжены исследования методов прогнозирования динамики изменения состояний стохастической системы, первоначально заданных в виде табличной функции (узловые точки). Основной метод построения прогнозной модели – поиск непрерывной «аппроксимирующей» функции, наиболее близко отстоящей от заданных узловых точек. В работе предложенный метод применяется для прогнозирования появления инцидентов, приводящих к нарушению информационной безопасности. Полученные результаты могут применяться для оценки рисков нарушения информационной безопасности и вероятного ущерба, которые, в свою очередь, служат для обоснования уровня защищенности информационной системы.
Настоящая книга представляет собой своеобразный расширенный учебник по математической статистике. Данный учебник не ограничен рамками учебного стандарта или вузовской программы --- он предназначен всем, кто интересуется математикой вообще и, в частности, хочет узнать, что такое современная математическая статистика, какие задачи и какими методами она решает, какие результаты в ней уже накоплены, какие проблемы в ней сегодня актуальны; наконец, каковы ее истоки, какой путь она прошла и какие ученые были ее творцами. По замыслу авторов, книга простым и доступным языком рассказывает о математической статистике и одновременно обучает ей. Вся теория объясняется и иллюстрируется на интересных и тщательно подобранных примерах. Книга может служить и задачником, так как содержит большой список упражнений для самостоятельного решения, а также справочным пособием по математической статистике, а в некоторых аспектах --- и по теории вероятностей.
Книга будет интересна преподавателям, аспирантам и студентам естественных и технических вузов, в которых изучается математическая статистика, научным работникам, использующим в своей деятельности методы математической статистики, а также самому широкому кругу любителей математики.
В первой части пособия рассмотрены дополнительные вопросы теории вероятностей, необходимые для изучения математической статистики, и начальные сведения по математической статистике.
Во второй части пособия подробно изложены вопросы, связанные с решением одной из основных задач математической статистики - параметрической задачи. Приведено много примеров.
Рекомендуется всем студентам МИЭМа, изучающим математическую статистику.
Центр конъюнктурных исследований Института статистических исследований и экономики знаний НИУ ВШЭ представляет информационно-аналитический материал «Деловой климат в оптовой торговле в I квартале 2012 года», подготовленный в рамках Программы фундаментальных исследований НИУ ВШЭ на основе ежеквартальных конъюнктурных опросов руководителей около 3 тыс. торговых компаний, проводимых Федеральной службой государственной статистики.
Конъюнктурные обследования направлены на оперативное получение от предпринимателей в дополнение к официальным статистическим данным краткосрочных качественных оценок о состоянии бизнеса и основных тенденциях его динамики, особенностях функционирования хозяйствующих субъектов, их намерениях, степени адаптации к механизмам хозяйствования, сложившемся деловом климате, а также о важнейших факторах, лимитирующих их деятельность.
Программа обследования гармонизирована с соответствующими подходами, принятыми в странах ОЭСР, и базируется на Гармонизированной Европейской Системе обследований деловых тенденций.
Структура выборочной совокупности идентична структуре генеральной статистической совокупности. При этом объем выборки достаточен для получения необходимой точности оценок показателей на всех уровнях разработки по разделу ОКВЭД (раздел G).
В сборнике представлены тезисы докладов участников XVIII Международной студенческой конференции-школы-семинара «Новые информационные технологии», состоявшейся в мае 2010 года.
Сборник состоит из двух разделов. Первый раздел сборника включает пленарные доклады ведущих специалистов. Второй раздел содержит тезисы докладов студентов и аспирантов, учащихся техникумов и колледжей, участвовавших в работе школы-семинара.
В основе настоящего учебного пособия лежит специальный курс по выбору студента, прочитанный автором на механико - математическом факультете МГУ им. М.В. Ломоносова в 2010-2012 учебных годах. Пособие знакомит читателя с методом параметрикса и его дискретным аналогом, развитым в самое последнее время автором пособия и его коллегами-соавторами. Оно объединяет воедино материал, который ранее содержался только в ряде журнальных статей. Не стремясь к максимальной общности изложения, автор ставил целью продемонстрировать возможности метода при доказательстве локальных предельных теорем о сходимости марковских цепей к диффузионному процессу и при получении двусторонних оценок типа Аронсона для некоторых вырожденных диффузий.
В сборнике представлены тезисы докладов участников XIX Международной студенческой конференции-школы-семинара «Новые информационные технологии», состоявшейся в мае 2011 года.
Сборник состоит из двух разделов. Первый раздел сборника включает пленарные доклады ведущих специалистов. Второй раздел содержит тезисы докладов студентов и аспирантов, учащихся техникумов и колледжей, участвовавших в работе школы-семинара.