• A
  • A
  • A
  • АБB
  • АБB
  • АБB
  • А
  • А
  • А
  • А
  • А
Обычная версия сайта

Препринт

On provability logics with linearly ordered modalities

Beklemishev L. D., Fernandez D., Joosten J.
We introduce the logics GLP(\Lambda), a generalization of Japaridze's polymodal provability logic GLP(\omega) where \Lambda is any linearly ordered set representing a hierarchy of provability operators of increasing strength.  We shall provide a reduction of these logics to GLP(\omega) yielding among other things a finitary proof of the normal form theorem for the variable-free fragment of GLP(\Lambda) and the decidability of GLP(\Lambda) for recursive orderings \Lambda. Further, we give a restricted axiomatization of the variable-free fragment of GLP(\Lambda).