## Mathematics

This is a brief textbook on complex analysis intended for the students of upper undergraduate or beginning graduate level. The author stresses the aspects of complex analysis that are most important for the student planning to study algebraic geometry and related topics. The exposition is rigorous but elementary: abstract notions are introduced only if they are really indispensable. This approach provides a motivation for the reader to digest more abstract definitions (e.g., those of sheaves or line bundles, which are not mentioned in the book) when he/she is ready for that level of abstraction indeed. In the chapter on Riemann surfaces, several key results on compact Riemann surfaces are stated and proved in the first nontrivial case, i.e. that of elliptic curves.

This book studies complex systems with elements represented by random variables. Its main goal is to study and compare uncertainty of algorithms of network structure identification with applications to market network analysis. For this, a mathematical model of random variable network is introduced, uncertainty of identification procedure is defined through a risk function, random variables networks with different measures of similarity (dependence) are discussed, and general statistical properties of identification algorithms are studied. The volume also introduces a new class of identification algorithms based on a new measure of similarity and prove its robustness in a large class of distributions, and presents applications to social networks, power transmission grids, telecommunication networks, stock market networks, and brain networks through a theoretical analysis that identifies network structures. Both researchers and graduate students in computer science, mathematics, and optimization will find the applications and techniques presented useful.

This book offers an introduction to the research in several recently discovered and actively developing mathematical and mathematical physics areas. It focuses on: 1) Feynman integrals and modular functions, 2) hyperbolic and Lorentzian Kac-Moody algebras, related automorphic forms and applications to quantum gravity, 3) superconformal indices and elliptic hypergeometric integrals, related instanton partition functions, 4) moonshine, its arithmetic aspects, Jacobi forms, elliptic genus, and string theory, and 5) theory and applications of the elliptic Painleve equation, and aspects of Painleve equations in quantum field theories. All the topics covered are related to various partition functions emerging in different supersymmetric and ordinary quantum field theories in curved space-times of different (d=2,3,…,6) dimensions. Presenting multidisciplinary methods (localization, Borcherds products, theory of special functions, Cremona maps, etc) for treating a range of partition functions, the book is intended for graduate students and young postdocs interested in the interaction between quantum field theory and mathematics related to automorphic forms, representation theory, number theory and geometry, and mirror symmetry.

This book constitutes the proceedings of the 19th International Conference on Mathematical Optimization Theory and Operations Research, MOTOR 2020, held in Novosibirsk, Russia, in July 2020. The 31 full papers presented in this volume were carefully reviewed and selected from 102 submissions. The papers are grouped in these topical sections: discrete optimization; mathematical programming; game theory; scheduling problem; heuristics and metaheuristics; and operational research applications.

This book presents recent non-asymptotic results for approximations in multivariate statistical analysis. The book is unique in its focus on results with the correct error structure for all the parameters involved. Firstly, it discusses the computable error bounds on correlation coefficients, MANOVA tests and discriminant functions studied in recent papers. It then introduces new areas of research in high-dimensional approximations for bootstrap procedures, Cornish–Fisher expansions, power-divergence statistics and approximations of statistics based on observations with random sample size. Lastly, it proposes a general approach for the construction of non-asymptotic bounds, providing relevant examples for several complicated statistics. It is a valuable resource for researchers with a basic understanding of multivariate statistics.

The materials of The International Scientific – Practical Conference is presented below. The Conference reflects the modern state of innovation in education, science, industry and social-economic sphere, from the standpoint of introducing new information technologies. It is interesting for a wide range of researchers, teachers, graduate students and professionals in the field of innovation and information technologies.

This book constitutes the proceedings of the 8th International Conference on Analysis of Images, Social Networks and Texts, AIST 2019, held in Kazan, Russia, in July 2019.

The 24 full papers and 10 short papers were carefully reviewed and selected from 134 submissions (of which 21 papers were rejected without being reviewed). The papers are organized in topical sections on general topics of data analysis; natural language processing; social network analysis; analysis of images and video; optimization problems on graphs and network structures; analysis of dynamic behaviour through event data.

**Provides an overview of the developments and advances in the field of network clustering and blockmodeling over the last 10 years**

This book offers an integrated treatment of network clustering and blockmodeling, covering all of the newest approaches and methods that have been developed over the last decade. Presented in a comprehensive manner, it offers the foundations for understanding network structures and processes, and features a wide variety of new techniques addressing issues that occur during the partitioning of networks across multiple disciplines such as community detection, blockmodeling of valued networks, role assignment, and stochastic blockmodeling.

Written by a team of international experts in the field, *Advances in Network Clustering and Blockmodeling *offers a plethora of diverse perspectives covering topics such as: bibliometric analyses of the network clustering literature; clustering approaches to networks; label propagation for clustering; and treating missing network data before partitioning. It also examines the partitioning of signed networks, multimode networks, and linked networks. A chapter on structured networks and coarsegrained descriptions is presented, along with another on scientific coauthorship networks. The book finishes with a section covering conclusions and directions for future work. In addition, the editors provide numerous tables, figures, case studies, examples, datasets, and more.

*Advances in Network Clustering and Blockmodeling *is an ideal book for graduate and undergraduate students taking courses on network analysis or working with networks using real data. It will also benefit researchers and practitioners interested in network analysis.

This book deals with mathematical modeling, namely, it describes the mathematical model of heat transfer in a silicon cathode of small (nano) dimensions with the possibility of partial melting taken into account. This mathematical model is based on the phase field system, i.e., on a contemporary generalization of Stefan-type free boundary problems. The approach used is not purely mathematical but is based on the understanding of the solution structure (construction and study of asymptotic solutions) and computer calculations. The book presents an algorithm for numerical solution of the equations of the mathematical model including its parallel implementation. The results of numerical simulation concludes the book. The book is intended for specialists in the field of heat transfer and field emission processes and can be useful for senior students and postgraduates.

This book constitutes the refereed proceedings of the 11th International Conference on Intelligent Data Processing, IDP 2016, held in Barcelona, Spain, in October 2016.

The 11 revised full papers were carefully reviewed and selected from 52 submissions. The papers of this volume are organized in topical sections on machine learning theory with applications; intelligent data processing in life and social sciences; morphological and technological approaches to image analysis.

This book is devoted to classical and modern achievements in complex analysis. In order to benefit most from it, a first-year university background is sufficient; all other statements and proofs are provided.

We begin with a brief but fairly complete course on the theory of holomorphic, meromorphic, and harmonic functions. We then present a uniformization theory, and discuss a representation of the moduli space of Riemann surfaces of a fixed topological type as a factor space of a contractible space by a discrete group. Next, we consider compact Riemann surfaces and prove the classical theorems of Riemann-Roch, Abel, Weierstrass, etc. We also construct theta functions that are very important for a range of applications.

After that, we turn to modern applications of this theory. First, we build the (important for mathematics and mathematical physics) Kadomtsev-Petviashvili hierarchy and use validated results to arrive at important solutions to these differential equations. We subsequently use the theory of harmonic functions and the theory of differential hierarchies to explicitly construct a conformal mapping that translates an arbitrary contractible domain into a standard disk – a classical problem that has important applications in hydrodynamics, gas dynamics, etc.

The book is based on numerous lecture courses given by the author at the Independent University of Moscow and at the Mathematics Department of the Higher School of Economics.

In the last 30 years a new pattern of interaction between mathematics and physics emerged, in which the latter catalyzed the creation of new mathematical theories. Most notable examples of this kind of interaction can be found in the theory of moduli spaces. In algebraic geometry the theory of moduli spaces goes back at least to Riemann, but they were first rigorously constructed by Mumford only in the 1960s. The theory has experienced an extraordinary development in recent decades, finding an increasing number of connections with other fields of mathematics and physics. In particular, moduli spaces of different objects (sheaves, instantons, curves, stable maps, etc.) have been used to construct invariants (such as Donaldson, Seiberg-Witten, Gromov-Witten, Donaldson-Thomas invariants) that solve longstanding, difficult enumerative problems. These invariants are related to the partition functions and expectation values of quantum field and string theories. In recent years, developments in both fields have led to an unprecedented cross-fertilization between geometry and physics. These striking interactions between geometry and physics were the theme of the CIME School Geometric Representation Theory and Gauge Theory. The School took place at the Grand Hotel San Michele, Cetraro, Italy, in June, Monday 25 to Friday 29, 2018. The present volume is a collection of notes of the lectures delivered at the school. It consists of three articles from Alexander Braverman and Michael Finkelberg, Andrei Negut, and Alexei Oblomkov, respectively.

We propose a novel machine-learning-based approach to detect bid leakage in first-price sealed-bid auctions. We extract and analyze the data on more than 1.4 million Russian procurement auctions between 2014 and 2018. As bid leakage in each particular auction is tacit, the direct classification is impossible. Instead, we reduce the problem of bid leakage detection to Positive-Unlabeled Classification. The key idea is to regard the losing participants as fair and the winners as possibly corrupted. This allows us to estimate the prior probability of bid leakage in the sample, as well as the posterior probability of bid leakage for each specific auction. We find that at least 16% of auctions are exposed to bid leakage. Bid leakage is more likely in auctions with a higher reserve price, lower number of bidders and lower price fall, and where the winning bid is received in the last hour before the deadline.

Workshop concentrates on an interdisciplinary approach to modelling human behavior incorporating data mining and expert knowledge from behavioral sciences. Data analysis results extracted from clean data of laboratory experiments will be compared with noisy industrial datasets from the web e.g. Insights from behavioral sciences will help data scientists. Behavior scientists will see new inspirations to research from industrial data science. Market leaders in Big Data, as Microsoft, Facebook, and Google, have already realized the importance of experimental economics know-how for their business.

In Experimental Economics, although financial rewards restrict subjects preferences in experiments, exclusive application of analytical game theory is not enough to explain the collected data. It calls for the development and evaluation of more sophisticated models. The more data is used for evaluation, the more statistical significance can be achieved. Since large amounts of behavioral data are required to scan for regularities, along with automated agents needed to simulate and intervene in human interactions, Machine Learning is the tool of choice for research in Experimental Economics. This workshop is aimed at bringing together researchers from both Data Analysis and Economics in order to achieve mutually beneficial results.

This is an advanced text on ordinary differential equations (ODES) in Banach and more general locally convex spaces, most notably the ODEs on measures and various function spaces. It yields the concise exposition of the fundamentals with the fast, but rigorous and systematic transition to the up-fronts of modern research in linear and nonlinear partial and pseudo-differential equations, general kinetic equations and fractional evolutions. The level of generality is chosen to be suitable for the study of the most important nonlinear equations of mathematical physics, such as Boltzmann, Smoluchovskii, Vlasov, Landau-Fokker-Planck, Cahn-Hilliard, Hamilton-Jacobi-Bellman, nonlinear Schroedinger, McKean-Vlasov diffusions and their nonlocal extensions, mass-action-law kinetics from chemistry. It also covers nonlinear evolutions arising in evolutionary biology and mean-field games, optimization theory, epidemics and system biology, in general models of interacting particles or agents describing splitting and merging, collisions and breakage, mutations and the preferential-attachment growth on networks. The book is meant for final year undergraduate and postgraduate students and researchers in differential equations and their applications. A significant amount of attention is paid to the interconnections between various topics revealing where and how a particular result is used in other chapters or may be used in other contexts, as well as to the clarification of the links between the languages of pseudo-differential operators, generalized functions, operator theory, abstract linear spaces, fractional calculus and path integrals.

The Third Workshop on Computer Modelling in Decision Making (CMDM 2018) was held in Saratov State University (Saratov, Russia) within the VII International Youth Research and Practice Conference ‘Mathematical and Computer Modelling in Economics, Insurance and Risk Management’. The workshop 's main topic is computer and mathematical modeling in decision making in finance, insurance, banking, economic forecasting, investment and financial analysis. Researchers, postgraduate students, academics as well as financial, bank, insurance and government workers participated in the Workshop.

Modal logics, both propositional and predicate, have been used in computer science since the late 1970s. One of the most important properties of modal logics of relevance to their applications in computer science is the complexity of their satisﬁability problem. The complexity of satisﬁability for modal logics is rather high: it ranges from NP-complete to undecidable for propositional logics and is undecidable for predicate logics. This has, for a long time, motivated research in drawing the borderline between tractable and intractable fragments of propositional modal logics as well as between decidable and undecidable fragments of predicate modal logics. In the present thesis, we investigate some very natural restrictions on the languages of propositional and predicate modal logics and show that placing those restrictions does not decrease complexity of satisﬁability. For propositional languages, we consider restricting the number of propositional variables allowed in the construction of formulas, while for predicate languages, we consider restricting the number of individual variables as well as the number and arity of predicate letters allowed in the construction of formulas. We develop original techniques, which build on and develop the techniques known from the literature, for proving that satisﬁability for a ﬁnite-variable fragment of a propositional modal logic is as computationally hard as satisﬁability for the logic in the full language and adapt those techniques to predicate modal logics and prove undecidability of fragments of such logics in the language with a ﬁnite number of unary predicate letters as well as restrictions on the number of individual variables. The thesis is based on four articles published or accepted for publication. They concern propositional dynamic logics, propositional branchingand alternating-time temporal logics, propositional logics of symmetric rela tions, and ﬁrst-order predicate modal and intuitionistic logics. In all cases, we identify the “minimal,” with regard to the criteria mentioned above, fragments whose satisﬁability is as computationally hard as satisﬁability for the entire logic.

In this paper, we proceed to the study of tetrahedral symmetry in the 3D Ising model, which is considered as the first forerunner of integrability. The weight matrix of the model on a regular cubic lattice satisfying the twisted tetrahedron equation (TTE) is constructed. The latter is a modification of the Zamolodchikov tetrahedron equation, which appeared in integrable 3D statistical models. The method is based on the theory of the n-simplicial complex and the original recursion procedure on the space of n-simplex solutions. This recursion deserves its own investigation. Surprisingly, the weight matrix has some properties inherent for the hypercube combinatorics and coding theory.

We consider the problem of estimation of the drift parameter of an ergodic Ornstein– Uhlenbeck type process driven by a Lévy process with heavy tails. The process is observed continuously on a long time interval [0, T ], T →∞. We prove that the statistical model is locally asymptotic mixed normal and the maximum likelihood estimator is asymptotically efficient.

The Alexander polynomial in several variables is defined for links in three-dimensional homology spheres, in particular, in the Poincaré sphere: the intersection of the surface *S*={(*z*1,*z*2,*z*3)∈C3:(*z*1)5+(*z*2)3+(*z*3)2=0} with the 5-dimensional sphere S*ε*5={(*z*1,*z*2,*z*3)∈C3:|*z*1|2+|*z*2|2+|*z*3|2=*ε*2}. An algebraic link in the Poincaré sphere is the intersection of a germ of a complex analytic curve in (*S*, 0) with the sphere S*ε*5 of radius *ε* small enough. Here we discuss to which extent the Alexander polynomial in several variables of an algebraic link in the Poincaré sphere determines the topology of the link. We show that, if the strict transform of a curve in (*S*, 0) does not intersect the component of the exceptional divisor corresponding to the end of the longest tail in the corresponding *E*8-diagram, then its Alexander polynomial determines the combinatorial type of the minimal resolution of the curve and therefore the topology of the corresponding link. The Alexander polynomial of an algebraic link in the Poincaré sphere is determined by the Poincaré series of the filtration defined by the corresponding curve valuations. (They coincide with each other for a reducible curve singularity and differ by the factor (1−*t*) for an irreducible one.) We show that, under conditions similar to those for curves, the Poincaré series of a collection of divisorial valuations determines the combinatorial type of the minimal resolution of the collection.

Let C_d be the space of non-singular, univariate polynomials of degree d. The Viète map V sends a polynomial to its unordered set of roots. It is a classical fact that the induced map V_∗ at the level of fundamental groups realises an isomorphism between π_1(C_d) and the Artin braid group B_d. For fewnomials, or equivalently for the intersection C of C_d with a collection of coordinate hyperplanes, the image of the map V_∗:π_1(C)→B_d is not known in general. In the present paper, we show that the map V_∗ is surjective provided that the support of the corresponding polynomials spans Z as an affine lattice. If the support spans a strict sublattice of index b, we show that the image of V_∗ is the expected wreath product of Z/bZ with B_d/b. From these results, we derive an application to the computation of the braid monodromy for collections of univariate polynomials depending on a common set of parameters.

In our mini-review, we address manifestations of T/B scaling behavior of heavy-fermion (HF) compounds, where T and B are respectively temperature and magnetic field. Using experimental data and the fermion condensation theory, we show that this scaling behavior is typical of HF compounds including HF metals, quasicrystals, and quantum spin liquids. We demonstrate that such scaling behavior holds down to the lowest temperature and field values, so that T/B varies in a wide range, provided the HF compound is located near the topological fermion condensation quantum phase transition (FCQPT). Due to the topological properties of FCQPT, the effective mass M∗ exhibits a universal behavior, and diverges as T goes to zero. Such a behavior of M∗ has important technological applications. We also explain how to extract the universal scaling behavior from experimental data collected on different heavy-fermion compounds. As an example, we consider the HF metal YbCo2Ge4, and show that its scaling behavior is violated at low temperatures. Our results obtained show good agreement with experimental facts.

P. Berglund, T. Hübsch, and M. Henningson proposed a method to construct mirror symmetric Calabi–Yau manifolds. They considered a pair consisting of an invertible polynomial and of a finite (abelian) group of its diagonal symmetries together with a dual pair. A. Takahashi suggested a method to generalize this construction to symmetry groups generated by some diagonal symmetries and some permutations of variables. In a previous paper, we explained that this construction should work only under a special condition on the permutation group called parity condition (PC). Here we prove that, if the permutation group is cyclic and satisfies PC, then the reduced orbifold Euler characteristics of the Milnor fibres of dual pairs coincide up to sign.

Asymptotic behavior of large excursions probabilities are evaluated for Euclidean norm of a wide class of Gaussian non-stationary vector processes with independent identically distributed components. It is assumed that the components have means zero and variances reaching its absolute maximum at only one point of the considered time interval. The Bessel process is an important example of such processes.