Book
International Conference on Educational Data Mining (EDM) 2011. Proceedings of the 4th International Conference on Educational Data Mining. Eindhoven, 6-8 July, 2011
The 4th International Conference on Educational Data Mining (EDM 2011) brings together researchers from computer science, education, psychology, psychometrics, and statistics to analyze large datasets to answer educational research questions. The conference, held in Eindhoven, The Netherlands, July 6-9, 2011, follows the three previous editions (Pittsburgh 2010, Cordoba 2009 and Montreal 2008), and a series of workshops within the AAAI, AIED, EC-TEL, ICALT, ITS, and UM conferences. The increase of e-learning resources such as interactive learning environments, learning management systems, intelligent tutoring systems, and hypermedia systems, as well as the establishment of state databases of student test scores, has created large repositories of data that can be explored to understand how students learn. The EDM conference focuses on data mining techniques for using these data to address important educational questions.
This paper presents an application of formal concept analysis to the study of student assessment data. Formal concept analysis (FCA) is an algebraic framework for data analysis and knowledge representation that has been proven useful in a wide range of application areas such as life sciences, psychology, sociology, linguistics, information technology and computer science. We use the FCA approach to represent the structure of an educational domain under consideration as a concept lattice. In this paper, we aim at building lattice-based taxonomies to represent the structure of the assessment data to identify the most stable student groups w.r.t the students achievements (and dually for courses marks) at certain periods of time and to track the changes in their state over time.
The aim of this paper is to present a case study in the analysis of university applications to the Higher School of Economics (U-HSE), Moscow. Our approach uses lattice-based taxonomies of entrants’ decisions about undergraduate programmes. These taxonomies were built by means of Formal Concept Analysis (FCA). FCA is a well-known algebraic technique for objectattribute data analysis. Admission data as well as formalised survey data were used to reveal possibly significant factors of entrants’ decisions. In this paper we argued that institutional characteristics of the admission process are highly correlated with entrants’ choice. The obtained results are helpful to the university to correct the structure and positioning of its undergraduate programmes.

This book constitutes the refereed proceedings of the 20th International Symposium on String Processing and Information Retrieval, SPIRE 2013, held in Jerusalem, Israel, in October 2013. The 18 full papers, 10 short papers were carefully reviewed and selected from 60 submissions. The program also featured 4 keynote speeches. The following topics are covered: fundamentals algorithms in string processing and information retrieval; SP and IR techniques as applied to areas such as computational biology, DNA sequencing, and Web mining.
This paper discusses approaches to the selection of keywords, used for information extraction of event frames. In particular, the innovation event is associated with different lexical items in different areas of knowledge. The paper evaluated the contribution of general and specific vocabulary in the representation of the frame in a particular subject area.
In this paper we propose two new algorithms based on biclustering analysis, which can be used at the basis of a recommender system for educational orientation of Russian School graduates. The first algorithm was designed to help students make a choice between different university faculties when some of their preferences are known. The second algorithm was developed for the special situation when nothing is known about their preferences. The final version of this recommender system will be used by Higher School of Economics.
An important characteristic feature of recommender systems for web pages is the abundance of textual information in and about the items being recommended (web pages). To improve recommendations and enhance user experience, we propose to use automatic tag (keyword) extraction for web pages entering the recommender system. We present a novel tag extraction algorithm that employs semi-supervised classification based on a dataset consisting of pre-tagged documents and (for the most part) partially tagged documents whose tags are automatically mined from the content. We also compare several classification algorithms for tag extraction in this context.
Formal Concept Analysis (FCA) is a mathematically well-founded theory aimed at data analysis and classication, introduced and detailed in the book of Bernhard Ganter and Rudolf Wille, \Formal Concept Analysis", Springer 1999. The area came into being in the early 1980s and has since then spawned over 10000 scientic publications and a variety of practically deployed tools. FCA allows one to build from a data table with objects in rows and attributes in columns a taxonomic data structure called concept lattice, which can be used for many purposes, especially for Knowledge Discovery and Information Retrieval. The \Formal Concept Analysis Meets Information Retrieval" (FCAIR) workshop collocated with the 35th European Conference on Information Retrieval (ECIR 2013) was intended, on the one hand, to attract researchers from FCA community to a broad discussion of FCA-based research on information retrieval, and, on the other hand, to promote ideas, models, and methods of FCA in the community of Information Retrieval. This volume contains 11 contributions to FCAIR workshop (including 3 abstracts for invited talks and tutorial) held in Moscow, on March 24, 2013. All submissions were assessed by at least two reviewers from the program committee of the workshop to which we express our gratitude. We would also like to thank the co-organizers and sponsors of the FCAIR workshop: Russian Foundation for Basic Research, National Research University Higher School of Economics, and Yandex.
This article represents a new technique for collaborative filtering based on pre-clustering of website usage data. The key idea involves using clustering methods to define groups of different users.
Formal Concept Analysis (FCA) is an unsupervised clustering technique and many scientific papers are devoted to applying FCA in Information Retrieval (IR) research. We collected 103 papers published between 2003-2009 which mention FCA and information retrieval in the abstract, title or keywords. Using a prototype of our FCA-based toolset CORDIET, we converted the pdf-files containing the papers to plain text, indexed them with Lucene using a thesaurus containing terms related to FCA research and then created the concept lattice shown in this paper. We visualized, analyzed and explored the literature with concept lattices and discovered multiple interesting research streams in IR of which we give an extensive overview. The core contributions of this paper are the innovative application of FCA to the text mining of scientific papers and the survey of the FCA-based IR research.
Doctoral students were invited to the Doctoral Consortium held in conjunction with the main conference of ECIR 2013. The Doctoral Consortium aimed to provide a constructive setting for presentations and discussions of doctoral students’ research projects with senior researchers and other participating students. The two main goals of the Doctoral Consortium were: 1) to advise students regarding current critical issues in their research; and 2) to make students aware of the strengths and weakness of their research as viewed from different perspectives. The Doctoral Consortium was aimed for students in the middle of their thesis projects; at minimum, students ought to have formulated their research problem, theoretical framework and suggested methods, and at maximum, students ought to have just initiated data analysis. The Doctoral Consortium took place on Sunday, March 24, 2013, at the ECIR 2013 venue, and participation is by invitation only. The format was designed as follows: The doctoral students presents summaries of their work to other participating doctoral students and the senior researchers. Each presentation was followed by a plenary discussion, and individual discussion with one senior advising researcher. The discussions in the group and with the advisors were intended to help the doctoral student to reflect on and carry on with their thesis work.
We consider certain spaces of functions on the circle, which naturally appear in harmonic analysis, and superposition operators on these spaces. We study the following question: which functions have the property that each their superposition with a homeomorphism of the circle belongs to a given space? We also study the multidimensional case.
We consider the spaces of functions on the m-dimensional torus, whose Fourier transform is p -summable. We obtain estimates for the norms of the exponential functions deformed by a C1 -smooth phase. The results generalize to the multidimensional case the one-dimensional results obtained by the author earlier in “Quantitative estimates in the Beurling—Helson theorem”, Sbornik: Mathematics, 201:12 (2010), 1811 – 1836.
We consider the spaces of function on the circle whose Fourier transform is p-summable. We obtain estimates for the norms of exponential functions deformed by a C1 -smooth phase.