Book
Frontiers in Games and Dynamic Games
This contributed volume presents the state-of-the-art of games and dynamic games, featuring several chapters based on plenary sessions at the ISDG-China Chapter Conference on Dynamic Games and Game Theoretic Analysis, which was held from August 3-5, 2017 at the Ningbo campus of the University of Nottingham, China. The chapters in this volume will provide readers with paths to further research, serving as a testimony to the vitality of the field. Experts cover a range of theory and applications related to games and dynamic games.
We are dealing with a search game where one searcher looks for two mobile objects on a graph. The searcher distributes his searching resource so as to maximize the probability of detecting at least one of the mobile objects. Each mobile object minimizes its own probability of being found. In this problem the Nash equilibrium, i.e. the optimal transition probabilities of the mobile objects and the optimal values of the searcher’s resource, was found. The value of the game in a single-stage search game with non-exponential payoff functions was found.

This book is devoted to game theory and its applications to environmental problems, economics, and management. It collects contributions originating from the 12th International Conference on “Game Theory and Management” 2018 (GTM2018) held at Saint Petersburg State University, Russia, from 27 to 29 June 2018.
An optimal control problem is formulated for a class of nonlinear systems for which there exists a coordinate representation transforming the original system into a system with a linear main part and a nonlinear feedback. In this case the coordinate transformation significantly changes the form of original quadratic functional. The penalty matrices become dependent on the system state. The linearity of the transformed system structure and the quadratic functional make it possible to pass over from the Hamilton–Jacoby–Bellman equation (HJB) to the state dependent Riccati equation (SDRE) upon the control synthesis. Note that it is rather difficult to solve the obtained form of SDRE analytically in the general case. In this study, we construct the guaranteed control method from the point of view of the system quality based on feedback linearization of the nonlinear system; the transformation of the cost function upon linearization is examined, as well as the system behavior in the presence of disturbance and the control synthesis for this case. The presented example illustrates the application of the proposed control method for the feedback linearizable nonlinear system.
This article analyzes state-owned companies and their place in the structure of market interactions in the context of modern approaches to the study of government failures and market failures, as well as the conditions of the system of private property rights rooting. Besides the general theoretical consideration of the costs of functioning of state-owned companies, the authors refer to the specific experience of the Russian economy, consistently analyzing the opportunities and palliatives of the current privatization policy, the experience of establishment and the risks of functioning of state corporations. Particular attention is paid to the problem of limited motivation to improve the institutional environment in general and, on the contrary, the expansion of the practice of direct government intervention in order to solve the problems of economic development. The authors also consider specific areas where there is a restriction of private property rights in connection with the expansion of the public sector, de jure and de facto.
This article will analyze the activity of state-owned companies and their place in the structure of market relations from the standpoint of contemporary approaches to the study of “state failure” and “market failure”. It will also consider the implications of the systematic embedding of private property rights. In addition to considering the costs of the functions of state-owned companies, the authors address the actual experience of the Russian economy in the present day, the experience of forming state corporations and the risks associated with their operation. Particular attention will be paid to the inhibition of incentives to improve the general institutional environment and, conversely, to the increasing incidence of direct state intervention in matters that affect economic development. We will examine the various ways in which the growth of the public sector, de jure and de facto, reduces opportunities for implementing private property rights.
This book is devoted to game theory and its applications to environmental problems, economics, and management. It collects contributions originating from the 12th International Conference on “Game Theory and Management” 2018 (GTM2018) held at Saint Petersburg State University, Russia, from 27 to 29 June 2018.
We use the vertical differentiation framework to explore the quality - price competition in the insurance market.
Game theory has recently become a useful tool for modeling and studying various networks. The past decade has witnessed a huge explosion of interest in issues that intersect networks and game theory. With the rapid growth of data traffic, from any kind of devices and networks, game theory is requiring more intelligent transformation. Game theory is called to play a key role in the design of new generation networks that are distributed, self-organizing, cooperative, and intelligent. This book consists of invited and technical papers of GAMENETS 2018, and contributed chapters on game theoretic applications such as networks, social networks, and smart grid.
The task of designing the control actions for a heavy water reactor under uncertainty changes its parameters considered in the key differential game. The possibility of representing nonlinear dynamics of the object in the form of a system with parameters depending on the state (State Dependent Coefficients) and quadratic functional qualities allow you to go from having to solve a scalar partial differential equation (the Hamilton-Jacobi-Bellman) to the Riccati equation with parameters depending on the state. Feasible solution obtained by applying the min-max method. The results of mathematical modeling system in the shutdown of a nuclear reactor.
Let k be a field of characteristic zero, let G be a connected reductive algebraic group over k and let g be its Lie algebra. Let k(G), respectively, k(g), be the field of k- rational functions on G, respectively, g. The conjugation action of G on itself induces the adjoint action of G on g. We investigate the question whether or not the field extensions k(G)/k(G)^G and k(g)/k(g)^G are purely transcendental. We show that the answer is the same for k(G)/k(G)^G and k(g)/k(g)^G, and reduce the problem to the case where G is simple. For simple groups we show that the answer is positive if G is split of type A_n or C_n, and negative for groups of other types, except possibly G_2. A key ingredient in the proof of the negative result is a recent formula for the unramified Brauer group of a homogeneous space with connected stabilizers. As a byproduct of our investigation we give an affirmative answer to a question of Grothendieck about the existence of a rational section of the categorical quotient morphism for the conjugating action of G on itself.
Let G be a connected semisimple algebraic group over an algebraically closed field k. In 1965 Steinberg proved that if G is simply connected, then in G there exists a closed irreducible cross-section of the set of closures of regular conjugacy classes. We prove that in arbitrary G such a cross-section exists if and only if the universal covering isogeny Ĝ → G is bijective; this answers Grothendieck's question cited in the epigraph. In particular, for char k = 0, the converse to Steinberg's theorem holds. The existence of a cross-section in G implies, at least for char k = 0, that the algebra k[G]G of class functions on G is generated by rk G elements. We describe, for arbitrary G, a minimal generating set of k[G]G and that of the representation ring of G and answer two Grothendieck's questions on constructing generating sets of k[G]G. We prove the existence of a rational (i.e., local) section of the quotient morphism for arbitrary G and the existence of a rational cross-section in G (for char k = 0, this has been proved earlier); this answers the other question cited in the epigraph. We also prove that the existence of a rational section is equivalent to the existence of a rational W-equivariant map T- - - >G/T where T is a maximal torus of G and W the Weyl group.