Book
Страницы истории отечественных ИТ
Biography and analysis of scientific activity one of the pioneers of Soviet computer science, - Anatoly Ivanovich Kitov.

In this paper we consider choice problems under the assumption that the preferences of the decision maker are expressed in the form of a parametric partial weak order without assuming the existence of any value function. We investigate both the sensitivity (stability) of each non-dominated solution with respect to the changes of parameters of this order, and the sensitivity of the set of non-dominated solutions as a whole to similar changes. We show that this type of sensitivity analysis can be performed by employing techniques of linear programming.
Let G be a semisimple algebraic group whose decomposition into the product of simple components does not contain simple groups of type A, and P⊆G be a parabolic subgroup. Extending the results of Popov [7], we enumerate all triples (G, P, n) such that (a) there exists an open G-orbit on the multiple flag variety G/P × G/P × . . . × G/P (n factors), (b) the number of G-orbits on the multiple flag variety is finite.
I give the explicit formula for the (set-theoretical) system of Resultants of m+1 homogeneous polynomials in n+1 variables