Article
ШИРОКОДИАПАЗОННЫЙ СПЕКТРОМЕТР ВЫСОКОГО РАЗРЕШЕНИЯ ТГЦ ЧАСТОТНОГО ДИАПАЗОНА
A possibility to develop a high-resolution terahertz (THz) spectrometer for a wide range of tasks is considered. The proposed spectrometer consists of a synthesizer based on a Gunn generator and a frequency multiplier based on a semiconductor superlattice as a radiation source, as well as a NbN hot-electron bolometer in a direct-detection mode as a THz radiation receiver. We present some experimental results for the spectrometer: the absorption lines of H 2O (1.92 THz, 17 th harmonic) and of HDO (1.49 THz, 13 th harmonic) have been registered. The results obtained are analyzed and further prospects to improve the spectrometer characteristics are considered.
It is well known that new effects appear in superconductors with the reduction of their size. Among them one is the most interesting – phenomenon of changing of critical temperature. It can be both decrease and increase in different metals, however, despite the number of existing works, there is still no generally accepted conception of what is exactly the origin of this effect. At the moment it is more or less clear, that this is a rather complicated mechanism, which is influenced by many factors, particularly connected with the sample’s manufacturing. Nevertheless, we suppose even after minimization of all impacts, the temperature of superconducting transition shifts anyway because of quantum size effect. We present here the results of the investigation of high-quality polycrystalline aluminum films and demonstrate the presence of quantum-confinement process that was not considered earlier. © 2019 International Institute of Refrigeration. All rights reserved.
Recently bright-light control of the SSPD has been demonstrated. This attack employed a "backdoor" in the detector biasing scheme. Under bright-light illumination, SSPD becomes resistive and remains "latched" in the resistive state even when the light is switched off. While the SSPD is latched, Eve can simulate SSPD single-photon response by sending strong light pulses, thus deceiving Bob. We developed the experimental setup for investigation of a dependence on latching threshold of SSPD on optical pulse length and peak power. By knowing latching threshold it is possible to understand essential requirements for development countermeasures against blinding attack on quantum key distribution system with SSPDs.
We demonstrate evidence of coherent magnetic flux tunneling through superconducting nanowires patterned in a thin highly disordered NbN film. The phenomenon is revealed as a superposition of flux states in a fully metallic superconducting loop with the nanowire acting as an effective tunnel barrier for the magnetic flux, and reproducibly observed in different wires. The flux superposition achieved in the fully metallic NbN rings proves the universality of the phenomenon previously reported for InOx .We perform microwave spectroscopy and study the tunneling amplitude as a function of the wire width, compare the experimental results with theories, and estimate the parameters for existing theoretical models.
The thermodynamical potential of a superconducting quantum cylinder is calculated. The dependence of the critical temperature and the heat capacity of a superconducting system of the surface concentration of electrons and on the radius of the nanotube is studied.
The dynamics of a two-component Davydov-Scott (DS) soliton with a small mismatch of the initial location or velocity of the high-frequency (HF) component was investigated within the framework of the Zakharov-type system of two coupled equations for the HF and low-frequency (LF) fields. In this system, the HF field is described by the linear Schrödinger equation with the potential generated by the LF component varying in time and space. The LF component in this system is described by the Korteweg-de Vries equation with a term of quadratic influence of the HF field on the LF field. The frequency of the DS soliton`s component oscillation was found analytically using the balance equation. The perturbed DS soliton was shown to be stable. The analytical results were confirmed by numerical simulations.
Radiation conditions are described for various space regions, radiation-induced effects in spacecraft materials and equipment components are considered and information on theoretical, computational, and experimental methods for studying radiation effects are presented. The peculiarities of radiation effects on nanostructures and some problems related to modeling and radiation testing of such structures are considered.
This volume presents new results in the study and optimization of information transmission models in telecommunication networks using different approaches, mainly based on theiries of queueing systems and queueing networks .
The paper provides a number of proposed draft operational guidelines for technology measurement and includes a number of tentative technology definitions to be used for statistical purposes, principles for identification and classification of potentially growing technology areas, suggestions on the survey strategies and indicators. These are the key components of an internationally harmonized framework for collecting and interpreting technology data that would need to be further developed through a broader consultation process. A summary of definitions of technology already available in OECD manuals and the stocktaking results are provided in the Annex section.