Глава
Toxic Comments Detection in Russian
P. 1-11.
Мы используем файлы cookies для улучшения работы сайта НИУ ВШЭ и большего удобства его использования. Более подробную информацию об использовании файлов cookies можно найти здесь, наши правила обработки персональных данных – здесь. Продолжая пользоваться сайтом, вы подтверждаете, что были проинформированы об использовании файлов cookies сайтом НИУ ВШЭ и согласны с нашими правилами обработки персональных данных. Вы можете отключить файлы cookies в настройках Вашего браузера.
One of the most challenging data analysis tasks of modern High Energy Physics experiments is the identification of particles. In this proceedings we review the new approaches used for particle identification at the LHCb experiment. Machine-Learning based techniques are used to identify the species of charged and neutral particles using several observables obtained by the LHCb sub-detectors. We show the performances of various solutions based on Neural Network and Boosted Decision Tree models.