• A
  • A
  • A
  • АБB
  • АБB
  • АБB
  • А
  • А
  • А
  • А
  • А
Обычная версия сайта

Книга

Колмогоровская сложность и алгоритмическая случайность

М.: МЦНМО, 2013.
Верещагин Н. К., Успенский В. А., Шень А.

Классическая (шенноновская) теория информации измеряет количество информации, заключённой в случайных величинах. В середине 1960-х годов А.Н.Колмогоров (и другие авторы) предложили измерять количество информации в конечных объектах с помощью теории алгоритмов, определив сложность объекта как минимальную длину программы, порождающей этот объект. Это определение послужило основой для алгоритмической теории информации, а также для алгоритмической теории вероятностей: объект считается случайным, если его сложность близка к максимальной. Предлагаемая книга содержит подробное изложение основных понятий алгоритмической теории информации и теории вероятностей, а также наиболее важных работ, выполненных в рамках колмогоровского семинара по сложности определений и сложности вычислений, основанного А.Н.Колмогоровым в начале 1980-х годов. Книга рассчитана на студентов и аспирантов математических факультетов и факультетов теоретической информатики.

Колмогоровская сложность и алгоритмическая случайность