Статья
Стохастические булевы функции и их спектры
Предлагается общая вероятностная модель для булевых функций от n переменных, задаваемая произвольной вероятностной мерой на множестве всех таких функций. Выводится характеристическая функция спектра Уолша случайной функции и находятся точные и асимптотические (при n→∞) распределения некоторых его характеристик для случая
параметрической меры.
Исследуются свойства спектра случайной булевой функции от n переменных. Выводится общая производящая функция спектра и находятся точные и асимптотические (при ) распределения различных характеристик спектра.
Исследована возможность применения излучения лазеров, работающих в периодическом импульсном режиме, для спектрального анализа тепловых свойств многослойных металлических материалов. Найдены импульсная и частотная характеристики образцов. Получено выражение для коэффициента передачи теплового сигнала в многослойных материалах. Используя параметрическую модель, по амплитудно-частотной характеристике измерено значение тепловой проводимости границы раздела трехслойного образца Mo (1 мкм) – W (48 мкм) – Mo (1 мкм) до и после облучения электронами с энергией 9 МэВ.
Сборник составлен по результатам исследований студентов и аспирантов Национального исследовательского университета «Высшая школа экономики», а также ряда ВУЗов Владивостока, Дубны, Иркутска, Йошкар-Олы, Киева, Курска, Луганска, Магнитогорска, Махачкалы, Москвы, Нижнего Новгорода, Новосибирска, Перми, Санкт-Петербурга, Саранска, Саратова, Улан-Удэ, Харькова, Челябинска. Результаты исследований посвящены вопросам статистической методологии, применению математико-статистических и эконометрических методов в различных отраслях экономики и социальной сферы. Обобщается зарубежный опыт статистического анализа ряда проблем экономической и социальной жизни. Сравнивается эффективность различных методов, формируются рекомендации по их выбору в зависимости от специфики решаемой задачи.
В статье исследовано поведение характеристических функций вероятностных распределений при полиномиальных отображениях
В статье рассматривается структура булевых функций.
Тезисы докладов, представленных на Международной конференции “Теория вероятностей и её приложения”, посвященной столетию со дня рождения Б.В. Гнеденко. Конференция проходила с 26 по 30 июня 2012 г. в Москве.
В первой части пособия рассмотрены дополнительные вопросы теории вероятностей, необходимые для изучения математической статистики, и начальные сведения по математической статистике.
Во второй части пособия подробно изложены вопросы, связанные с решением одной из основных задач математической статистики - параметрической задачи. Приведено много примеров.
Рекомендуется всем студентам МИЭМа, изучающим математическую статистику.
Центр конъюнктурных исследований Института статистических исследований и экономики знаний НИУ ВШЭ представляет информационно-аналитический материал «Деловой климат в оптовой торговле в I квартале 2012 года», подготовленный в рамках Программы фундаментальных исследований НИУ ВШЭ на основе ежеквартальных конъюнктурных опросов руководителей около 3 тыс. торговых компаний, проводимых Федеральной службой государственной статистики.
Конъюнктурные обследования направлены на оперативное получение от предпринимателей в дополнение к официальным статистическим данным краткосрочных качественных оценок о состоянии бизнеса и основных тенденциях его динамики, особенностях функционирования хозяйствующих субъектов, их намерениях, степени адаптации к механизмам хозяйствования, сложившемся деловом климате, а также о важнейших факторах, лимитирующих их деятельность.
Программа обследования гармонизирована с соответствующими подходами, принятыми в странах ОЭСР, и базируется на Гармонизированной Европейской Системе обследований деловых тенденций.
Структура выборочной совокупности идентична структуре генеральной статистической совокупности. При этом объем выборки достаточен для получения необходимой точности оценок показателей на всех уровнях разработки по разделу ОКВЭД (раздел G).
Настоящая книга представляет собой своеобразный расширенный учебник по математической статистике. Данный учебник не ограничен рамками учебного стандарта или вузовской программы --- он предназначен всем, кто интересуется математикой вообще и, в частности, хочет узнать, что такое современная математическая статистика, какие задачи и какими методами она решает, какие результаты в ней уже накоплены, какие проблемы в ней сегодня актуальны; наконец, каковы ее истоки, какой путь она прошла и какие ученые были ее творцами. По замыслу авторов, книга простым и доступным языком рассказывает о математической статистике и одновременно обучает ей. Вся теория объясняется и иллюстрируется на интересных и тщательно подобранных примерах. Книга может служить и задачником, так как содержит большой список упражнений для самостоятельного решения, а также справочным пособием по математической статистике, а в некоторых аспектах --- и по теории вероятностей.
Книга будет интересна преподавателям, аспирантам и студентам естественных и технических вузов, в которых изучается математическая статистика, научным работникам, использующим в своей деятельности методы математической статистики, а также самому широкому кругу любителей математики.
Изучается задача минимизации среднеквадратичного отклонения однородной струны с закрепленными концами от положения равновесия. Управлением служит плотность внешних сил, действующих на струну. Предполагается, что заданы начальные условия и концы струны закреплены. Используется метод Фурье, который позволяет задачу управления уравнением в частных производных свести к задаче управления счетной системой обыкновенных дифференциальных уравнений. Для полученной задачи оптимального управления в пространстве l2 доказано, что оптимальный синтез содержит особые траектории и траектории с учащающимися переключениями. Для исходной задачи оптимального управления колебаниями струны доказано, что существует единственное решение, при этом оптимальное управление имеет счетное число переключений на конечном интервале времени.
Изучаются класс задач оптимального управления и порожденные ими гамильтоновы системы в пространстве l 2. Доказывается существование экстремалей со счетным числом переключений на конечном интервале времени. Построен оптимальный синтез в пространстве l 2, образующий расслоение с кусочно-гладкими двумерными слоями, состоящими из экстремалей со счетным числом переключений, над бесконечномерной базой особых экстремалей.
В данной работе рассматривается пятое уравнение Пенлеве, которое имеет 4 комплексных параметра α, β, γ, δ. Методами степенной геометрии ищутся асимптотические разложения его решений при x → ∞. При α≠0 найдено 10 степенных разложений с двумя экспоненциальными добавками каждое. Шесть из них - по целым степеням x (они были известны), и четыре по полуцелым (они новые). При α=0 найдено 4 однопараметрических семейства экспоненциальных асимптотик y(x) и 3 однопараметрических семейства сложных разложений x=x(y). Все экспоненциальные добавки, экспоненциальные асимптотики и сложные разложения найдены впервые. Также уточнена техника вычисления экспоненциальных добавок.
Эта публикация представляет собой сборник отдельных статей "Третьей Международной конференции по динамике информационных систем», которая состоялась в университете Флориды, 16-18 февраля 2011 года. Цель данной конференции заключалась в том, чтобы собрать вместе ученых и инженеров из промышленности, правительства и научных кругов, чтобы они смогли обменяться новыми открытиями и результатами в вопросах, имеющих отношение к теории и практике динамики информационных систем. Динамика информационных систем: математическое открытие представляет собой современное исследование и предназначается студентам – аспирантам и исследователям, которые интересуются самыми последними открытиями в информационной теории и динамичных системах. Ученые других дисциплин могут также получить пользу от применения новых разработок в своих областях исследований.
В работе построено новое распределение, отвечающее реальному благородному газу, а также уравнение состояний для него.
Статьи данного сборника написаны на основе докладов, сделанных в 2011 г. на социологическом факультете МГУ им. М.В. Ломоносова на заседании XIV Междисциплинарного ежегодного научного семинара "Математическое моделирование социальных процессов" им. Героя Социалистического труда академика А.А. Самарского.
Издание предназначено для научных сотрудников, преподавателей, учащихся вузов и научных учреждений РАН, интересующихся проблемами, разработкой и внедрением методологии математического моделирования социальных процессов.