Статья
Stochastic Three Points Method for Unconstrained Smooth Minimization
Работа посвящена исследованию возможности картирования объектов внутри здания группой движущихся вокруг него автономных роботов, использующих в качестве зонда узкий радиоканал на частоте WiFi (2.4 ГГц). Для решения задачи предлагается использовать подход мобильной радиотомографии, состоящий из двух этапов: регистрации проекционных данных и томографического восстановления. Построена линейная модель попиксельного затухания радиосигнала, адекватность которой проверена на данных реального эксперимента. С использованием построенной модели проведено исследование предложенного подхода мобильной радиотомографии. Для тестирования синтезировались модели зданий с расположенными внутри объектами. Задача томографического восстановления решалась при помощи алгоритма SIRT с добавлением TV-регуляризации и регуляризации Тихонова. Установлена зависимость качества картирования от излучаемой мощности.
Modern imaging methods rely strongly on Bayesian inference techniques to solve challenging imaging problems. Currently, the predominant Bayesian computation approach is convex optimization, which scales very efficiently to high-dimensional image models and delivers accurate point estimation results. However, in order to perform more complex analyses, for example, image uncertainty quantification or model selection, it is necessary to use more computationally intensive Bayesian computation techniques such as Markov chain Monte Carlo methods. This paper presents a new and highly efficient Markov chain Monte Carlo methodology to perform Bayesian computation for high-dimensional models that are log-concave and nonsmooth, a class of models that is central in imaging sciences. The methodology is based on a regularized unadjusted Langevin algorithm that exploits tools from convex analysis, namely, Moreau--Yoshida envelopes and proximal operators, to construct Markov chains with favorable convergence properties. In addition to scaling efficiently to high-dimensions, the method is straightforward to apply to models that are currently solved by using proximal optimization algorithms. We provide a detailed theoretical analysis of the proposed methodology, including asymptotic and nonasymptotic convergence results with easily verifiable conditions, and explicit bounds on the convergence rates. The proposed methodology is demonstrated with four experiments related to image deconvolution and tomographic reconstruction with total-variation and $\ell_1$ priors, where we conduct a range of challenging Bayesian analyses related to uncertainty quantification, hypothesis testing, and model selection in the absence of ground truth.
Труды содержат доклады, представленные учеными из России, Украины, Белоруссии, Казахстана, Эстонии, Узбекистана, Германии, Польши, посвященные актуальным проблемам радиационной физики твердого тела (влияние радиации на физико-химические свойства и структуру металлических, полупроводниковых и диэлектрических материалов, влияние факторов космического пространства на свойства конструкционных и функциональных материалов и покрытий космических аппаратов, радиационно-технологические методы получения материалов, в частности наноматериалов, модифицирования и обработки материалов с целью улучшения их эксплуатационных свойств, создание и получение экологически чистых материалов с низкой наведенной радиоактивностью и др.).
Труды содержат доклады, представленные специалистами из России, Украины, Белорусии, Казахстана, Узбекистана, Германии, Великобритании, Польши по направлениям:«Радиационная физика металлов», «Радиационная физика неметаллических материалов», «Физические основы радиационной технологии» и посвященные разнообразным проблемам радиационной физики твердого тела (процессы прохождения заряженных и нейтральных частиц, рентгеновского и гамма-излучений через вещество, электрон-атомные, атом-атомные, ион-атомные и др. столкновения в твердых телах, ориентационные явления при взаимодействии высокоэнергетических частиц с твердым телом, радиационно-индуцированные и радиационно-стимулированные явления в твердых телах и др.).
We study the complexity of approximating the Wasserstein barycenter of m discrete measures, or histograms of size n, by contrasting two alternative approaches that use entropic regularization. The first approach is based on the Iterative Bregman Projections (IBP) algorithm for which our novel analysis gives a complexity bound proportional to $m n^2 / \epsilon^2$ to approximate the original non-regularized barycenter. On the other hand, using an approach based on accelerated gradient descent, we obtain a complexity proportional to $m n^2 / \epsilon$. As a byproduct, we show that the regularization parameter in both approaches has to be proportional to $\epsilon$, which causes instability of both algorithms when the desired accuracy is high. To overcome this issue, we propose a novel proximal-IBP algorithm, which can be seen as a proximal gradient method, which uses IBP on each iteration to make a proximal step. We also consider the question of scalability of these algorithms using approaches from distributed optimization and show that the first algorithm can be implemented in a centralized distributed setting (master/slave), while the second one is amenable to a more general decentralized distributed setting with an arbitrary network topology.
Рассматриваются пространства функций на окружности, естественным образом возникающие в гармоническом анализе, и операторы замены переменной (суперпозиции с гомеоморфизмами окружности) в этих пространствах. В работе рассматривается вопрос о том, какие функции обладают тем свойством, что любая их суперпозиция с гомеоморфизмом принадлежит заданному пространству. Рассмотрен также многомерный случай.
Рассматриваются пространства функций на m -мерном торе, преобразование Фурье которых p -суммируемо. Получены оценки норм экспонент деформированных посреством C1 -гладкой фазовой функции. Результаты являются распространением на многомерный случай оценок, полученных автором ранее для одномерного случая в работе «Количественные оценки в теоремах типа теоремы Берлинга--Хелсона» Математический сборник, 201:12 (2010), 103-130.
Рассматриваются пространства функций на окружности таких, что их преобразование Фурье является p-суммируемым. Получены оценки норм экспонент, деформированных посредством C1 -гладкой фазовой функции.
Настоящая книга представляет собой своеобразный расширенный учебник по математической статистике. Данный учебник не ограничен рамками учебного стандарта или вузовской программы --- он предназначен всем, кто интересуется математикой вообще и, в частности, хочет узнать, что такое современная математическая статистика, какие задачи и какими методами она решает, какие результаты в ней уже накоплены, какие проблемы в ней сегодня актуальны; наконец, каковы ее истоки, какой путь она прошла и какие ученые были ее творцами. По замыслу авторов, книга простым и доступным языком рассказывает о математической статистике и одновременно обучает ей. Вся теория объясняется и иллюстрируется на интересных и тщательно подобранных примерах. Книга может служить и задачником, так как содержит большой список упражнений для самостоятельного решения, а также справочным пособием по математической статистике, а в некоторых аспектах --- и по теории вероятностей.
Книга будет интересна преподавателям, аспирантам и студентам естественных и технических вузов, в которых изучается математическая статистика, научным работникам, использующим в своей деятельности методы математической статистики, а также самому широкому кругу любителей математики.
В данной работе рассматривается пятое уравнение Пенлеве, которое имеет 4 комплексных параметра. Методами степенной геометрии ищутся асимптотические разложения его решений в окрестности его неособой точки z=z0, z0≠0, z0≠∞, при любых значениях параметров уравнения. Показано, что имеется ровно 10 семейств разложений решений уравнения. Все они - по целым степеням локальной переменной z - z0. Из них одно новое; у него произвольный коэффициент при четвертой степени локальной переменной. Одно из семейств однопараметрическое, остальные - двухпараметрические. Доказано, что все разложения сходятся в окрестности (а являющиеся полюсами - в проколотой окрестности) точки z=z0.
В учебном пособии рассматриваются базовые вопросы компьютерной лингвистики: от теории лингвистического и математического моделирования до вариантов технологических решений. Дается лингвистическая интерпретация основных лингвистических объектов и единиц анализа. Приведены сведения, необходимые для создания отдельных подсистем, отвечающих за анализ текстов на естественном языке. Рассматриваются вопросы построения систем классификации и кластеризации текстовых данных, основы фрактальной теории текстовой информации.
Предназначено для студентов и аспирантов высших учебных заведений, работающих в области обработки текстов на естественном языке.
В данной работе рассматривается пятое уравнение Пенлеве, которое имеет 4 комплексных параметра α, β, γ, δ. Методами степенной геометрии ищутся асимптотические разложения его решений при x → ∞. При α≠0 найдено 10 степенных разложений с двумя экспоненциальными добавками каждое. Шесть из них - по целым степеням x (они были известны), и четыре по полуцелым (они новые). При α=0 найдено 4 однопараметрических семейства экспоненциальных асимптотик y(x) и 3 однопараметрических семейства сложных разложений x=x(y). Все экспоненциальные добавки, экспоненциальные асимптотики и сложные разложения найдены впервые. Также уточнена техника вычисления экспоненциальных добавок.
В данной работе рассматривается пятое уравнение Пенлеве. Методами степенной геометрии ищутся асимптотические разложения его решений при x → 0. Получено 27 семейств разложений решений уравнения. 19 из них получены из разложений решений шестого уравнения Пенлеве. Среди остальных 8 семейств одно было известно раньше, ещё одно может быть получено из разложения решения третьего уравнения Пенлеве. Новыми являются 3 семейства полуэкзотических разложений, 2 семейства сложных разложений и семейство степенно-логарифмических разложений.