• A
  • A
  • A
  • АБB
  • АБB
  • АБB
  • А
  • А
  • А
  • А
  • А
Обычная версия сайта

Статья

Morphisms of Berkovich curves and the different function

Advances in Mathematics. 2016. Vol. 303. No. 5. P. 800-858.
Cohen A., Temkin M., Trushin D.

Given a generically étale morphism f:Y→X of quasi-smooth Berkovich curves, we define a different function δf:Y→[0,1] that measures the wildness of the topological ramification locus of f. This provides a new invariant for studying f, which cannot be obtained by the usual reduction techniques. We prove that δf is a piecewise monomial function satisfying a balancing condition at type 2 points analogous to the classical Riemann–Hurwitz formula, and show that δf can be used to explicitly construct the simultaneous skeletons of X and Y. As another application, we use our results to completely describe the topological ramification locus of f when its degree equals to the residue characteristic p.