• A
  • A
  • A
  • АБB
  • АБB
  • АБB
  • А
  • А
  • А
  • А
  • А
Обычная версия сайта

Статья

О консервативных пространственных дискретизациях баротропной квазигазодинамической системы уравнений с потенциальной массовой силой

Рассматривается многомерная баротропная квазигазодинамическая система уравнений в форме законов сохранения массы и импульса, с общим уравнением состояния газа $p=p(\rho)$ с $p'(\rho)>0$ и потенциальной массовой силой. Для нее строятся две новые симметричные дискретизации по пространству на неравномерной прямоугольной сетке (с заданием плотности и скорости в узлах основной сетки, а компонент регуляризованного потока массы и тензора вязких напряжений - на разнесенных сетках). В них применены нестандартные аппроксимации $\nabla p(\rho)$, $\dv(\rho\bu)$ и $\rho$. Благодаря этому удается вывести дискретные закон сохранения полной массы и энергетическое неравенство, гарантирующее невозрастание полной энергии во времени. Важно, что эти дискретизации дополнительно обладают свойством хорошей сбалансированности на равновесных решениях. Обсуждается еще одна консервативная дискретизация, в которой все компоненты потока массы и тензора вязких напряжений задаются на одной и той же сетке. Для более простой баротропной квазигидродинамической системы уравнений аналогичными свойствами обладают соответствующие упрощения построенных дискретизаций.