• A
  • A
  • A
  • АБB
  • АБB
  • АБB
  • А
  • А
  • А
  • А
  • А
Обычная версия сайта

Статья

Классификация изомонодромных задач на эллиптических кривых

Успехи математических наук. 2014. Т. 69. № 1(415). С. 39-124.
Левин А. М., Ольшанецкий М. А., Зотов А. В.

В данной работе изомонодромные задачи описываются в терминах плоских G-расслоений на проколотых эллиптических кривых Σ_τ и связностей с регулярными особенностями в отмеченных точках. Расслоения классифицируются по их характеристическим классам, которые являются элементами группы вторых когомологий H^2(Σ_τ,Z(G)), где Z(G) – центр G. По каждой простой комплексной группе Ли G и произвольному характеристическому классу определяется пространство модулей плоских связностей, на которых уравнения изомонодромных деформаций задаются в гамильтоновой форме вместе с соответствующим представлением Лакса. Описываемые семейства задач включают в себя уравнение Пенлеве VI, его многокомпонентные обобщения и эллиптические системы Шлезингера. Общая конструкция описана для проколотой комплексной кривой произвольного рода. Описание Дринфельда–Симпсона пространства модулей расслоений Хиггса в виде двойного факторпространства обобщается на случай пространства плоских связностей. Такое локальное описание позволяет задать симплектическое соответствие Гекке для широкого круга изомонодромных задач, классифицируемых характеристическими классами отвечающих им расслоений. Например, уравнение Пенлеве VI описывается в терминах SL(2,C)-расслоений. Так как Z(SL(2,C))=Z_2, то это уравнение имеет два представления, связанных преобразованием Гекке: 1) в виде широко известной эллиптической формы уравнения Пенлеве VI (для тривиальных расслоений); 2) в виде неавтономного гиростата Жуковского–Вольтерра (для нетривиальных расслоений).