## Physics

This book highlights selected topics of standard and modern theory of accretion onto black holes and magnetized neutron stars. The structure of stationary standard discs and non-stationary viscous processes in accretion discs are discussed to the highest degree of accuracy analytic theory can provide, including relativistic effects in flat and warped discs around black holes. A special chapter is dedicated to a new theory of subsonic settling accretion onto a rotating magnetized neutron star. The book also describes supercritical accretion in quasars and its manifestation in lensing events. Several chapters cover the underlying physics of viscosity in astrophysical discs with some important aspects of turbulent viscosity generation. The book is aimed at specialists as well as graduate students interested in the field of theoretical astrophysics.

The present book gathers chapters from colleagues of A. Ezersky from Russia, especially those from Nizhny Novgorod Institute of Applied Physics of the Russian Academy of Science and from France, with whom he has been collaborating on experimental and theoretical developments. The book is subdivided into two parts. Part I contains eight chapters related to nonlinear water waves and Part II addresses in five chapters, patterns dynamics in nonequilibrium media. The contributions of Alexander B. Ezersky were valuable from both the experimental and the theoretical points of view. We thank all the authors for their contributions and the Springer Editor for having kindly accepted the edition of this book in memory of our colleague and friend, Prof. Alexander Borisovich Ezersky.

The materials of The International Scientific – Practical Conference is presented below.

The Conference reflects the modern state of innovation in education, science, industry and social-economic sphere, from the standpoint of introducing new information technologies.

It is interesting for a wide range of researchers, teachers, graduate students and professionals in the field of innovation and information technologies.

These notes have appeared as a result of a one-term course in superfluidity and superconductivity given by the author to fourth-year undergraduate students and first-year graduate students of the Department of Physics, Moscow State University of Education. The goal was not to give a detailed picture of these two macroscopic quantum phenomena with an extensive coverage of the experimental background and all the modern developments, but rather to show how the knowledge of undergraduate quantum mechanics and statistical physics could be used to discuss the basic concepts and simple problems, and draw parallels between superconductivity and superfluidity.

Superconductivity and superfluidity are two phenomena where quantum mechanics, typically constrained to the microscopic realm, shows itself on the macroscopic level. Conceptually and mathematically, these phenomena are related very closely, and some results obtained for one can, with a few modifications, be immediately carried over to the other. However, the student of these notes should be aware of important differences between superconductivity and superfluidity that stem mainly from two facts: (1) electrons in a superconductor carry a charge, therefore one has to take into account interaction with electromagnetic radiation; (2) electrons move in a lattice, therefore phonons play a role not only a mediators of attractive interaction between pairs of electrons, but also as scatterers of charge carriers.

Although these are notes on superfluidity *and *superconductivity, and there are a few cross-references, the two subjects can be studied independently with, perhaps, a little extra work by the student to fill in the gaps resulting from such study. The material of Chapter 1 introduces the method of second quantisation that is commonly used to discuss systems with many interacting particles. It is then applied in Chaper 2 to treat the uniform weakly interacting Bose gas within the approach by N. Bogoliubov, and in Chapter 4 to formulate the theory of the uniform superconducting state put forth by J. Bardeen, L. Cooper and R. Schrieffer. Chapter 3 presents the theory proposed independently by E. Gross and L. Pitaevskii of a non-uniform weakly interacting Bose gas, with a discussion of vortices, rotation of the condensate, and the Bogoliubov equations. In Chapter 5 we discuss the Ginzburd-Landau theory of a non-uniform superconductor near the critical temperature and apply it to a few simple problems such as the surface energy of the boundary between a normal metal and a superconductor, critical current and critical magnetic field, and vortices.

In this paper we present the studies of an ultrametric mathematical model for protein operation and give them physical interpretations that extend the conventional view of ensymatic activity regulation. The model is based on a representation of a multidimentional rugged energy landscapes by a hierarchy of nested basins of local minima and an approximation of protein dynamics with an ultrametric random walk. In contrast to an ordinary random walk, the ultrametric random walk is more suitable for describing of multiscale conformational dynamics and it is consistent with the kinetic features of ligand binding. Using our ultrametric model we show different ways to regulate enzymatic activity.

Superconducting properties of metallic nanowires can be entirely different from those of bulk superconductors because of the dominating role played by thermal and quantum fluctuations of the order parameter. For superconducting channels with diameters below ∼ 50 nm fluctuations of the phase of the complex order parameter - the phase slippage - lead to non-zero resistance below the critical temperature. Fluctuations of the modulus of the complex order parameter broaden the gap edge of the quasiparticle energy spectrum and modify the density of states. In extreme case of very narrow channels imbedded in high-impedance environment (which fix the charge and, hence, enable strong fluctuations of the quantum-conjugated variable, the phase) the superconductor can be driven to insulating state – the Coulomb blockade. We review recent experimental activities in the field demonstrating rather unusual phenomena.

The materials of The International Scientific – Practical Conference is presented below. The Conference reflects the modern state of innovation in education, science, industry and social-economic sphere, from the standpoint of introducing new information technologies.

It is interesting for a wide range of researchers, teachers, graduate students and professionals in the field of innovation and information technologies.

The textbook is meant for students continuing to study English (levels B1-B2 according to the European Framework) and majoring in science. The exercises and tasks are aimed at developing speaking, writing and reading skills on the basis of authentic texts on the achievements of scientists rewarded the Nobel Prize in the years 2000-2014

Adequate assessment of individual functional motor potentials is important for developing appropriate rehabilitation strategies in ischemic stroke [1]. Microstructural changes in corticospinal tract (CST) and corpus callosum (CC) were repeatedly correlated to post-stroke outcome [2, 3]. However, relationship between them and functional recovery remains unclear. Here we investigated relationship between integrity of CST and CC assessed with diffusion tensor imaging (DTI) and brain functional state assessed with navigated transcranial magnetic stimulation (nTMS) in chronic ischemic supratentorial stroke.

In this volume we have collected papers based on the presentations given at the International Conference on Computer Simulations in Physics and beyond (CSP2015), held in Moscow, September 6-10, 2015. We hope that this volume will be helpful and scientifically interesting for readers.

The Conference was organized for the first time with the common efforts of the Moscow Institute for Electronics and Mathematics (MIEM) of the National Research University Higher School of Economics, the Landau Institute for Theoretical Physics, and the Science Center in Chernogolovka. The name of the Conference emphasizes the multidisciplinary nature of computational physics. Its methods are applied to the broad range of current research in science and society. The choice of venue was motivated by the multidisciplinary character of the MIEM. It is a former independent university, which has recently become the part of the National Research University Higher School of Economics.

The development of terahertz imaging instruments for security systems is on the cutting edge of terahertz technology. We are developing a THz imaging system based on a superconducting integrated receiver (SIR). An SIR is a new type of heterodyne receiver based on an SIS mixer integrated with a flux-flow oscillator (FFO) and a harmonic mixer which is used for phase-locking the FFO. Employing an SIR in an imaging system means building an entirely new instrument with many advantages compared to traditional systems. In this project we propose a prototype THz imaging system using an 1 pixel SIR and 2D scanner. At a local oscillator frequency of 500 GHz the best noise equivalent temperature difference (NETD) of the SIR is 10 mK at an integration time of 1 s and a detection bandwidth of 4 GHz. The scanner consists of two rotating flat mirrors placed in front of the antenna consisting of a spherical primary reflector and an aspherical secondary reflector. The diameter of the primary reflector is 0.3 m. The operating frequency of the imaging system is 600 GHz, the frame rate is 0.1 FPS, the scanning area is 0.5 × 0.5 m2, the image resolution is 50 × 50 pixels, the distance from an object to the scanner was 3 m. We have obtained THz images with a spatial resolution of 8 mm and a NETD of less than 2 K.

IVEC was originally created in 2000 by merging the U.S. Power Tubes Conferences and the European Space Agency TWTA Workshops. Now a fully international conference, IVEC is held every other year in the U.S., and in Europe and Asia alternately every fourth year. After the successful and enjoyable meeting in Paris, France in May, IVEC 2014 will return to its beautiful U.S. location in the city of Monterey.

These proceedings have been written in an attempt to communicate the major purpose of the NATO Advanced ResearchWorkshop (ARW), 2013, that is, to bring to light the possibilities of performance, based on the actual level, of the everpromising THz (terahertz) technology, a kind of Araba Fenice, not yet known tomost technical operators, especially its appeal in security applications. To achieve this, the ARWhas invited highly experienced scientists with expertise in THz science and technology and its application areas. We begin with the consideration that the risk of mass murder due to terroristic attacks is on the rise, thus posing a threat for security in the civil and military world. To counter this problem, we look at one of the most appealing, newly emerging, technologies that is based on the THz detection of explosives and other forms of threats. However, operational difficulties (both for THz sensors and sources), especially regarding size, complexity of use, overall cost, and the need of very low temperatures for sensors, strongly limit the application of this technology. To find solutions to these and related issues, we invited expert scientists to present review papers on the most advanced sensors and sources based on THz technology, especially for security system applications. The ARW has been conferred the major task of describing the most advanced technologies, in terms of identifying their operational strengths and weaknesses, forecasting the best technological solutions to overcome the actual operational limits, and suggesting to the NATO SPS (Science for Peace and Security) Division the most reliable ways to proceed for future developments. To achieve a broad evaluation of the above aspects, a questionnaire on various key points with regard to the actual performance and possible future developments in the field of THz science, technology, and applications has been discussed.

Overview This book concisely presents the latest trends in the physics of superconductivity and superfluidity and magnetismin novel systems, as well as the problem of BCS-BEC crossover in ultracold quantum gases and high-Tc superconductors. It further illuminates the intensive exchange of ideas between these closely related fields of condensed matter physics over the last 30 years of their dynamic development. The content is based on the author’s original findings obtained at the Kapitza Institute, as well as advanced lecture courses he held at the Moscow Engineering Physical Institute, Amsterdam University, Loughborough University and LPTMS Orsay between 1994 and 2011. In addition to the findings of his group, the author discusses the most recent concepts in these fields, obtained both in Russia and in the West. The book consists of 16 chapters which are divided into four parts. The first part describes recent developments in superfluid hydrodynamics of quantum fluids and solids, including the fashionable subject of possible supersolidity in quantum crystals of 4He, while the second describes BCS-BEC crossover in quantum Fermi-Bose gases and mixtures, as well as in the underdoped states of cuprates. The third part is devoted to non-phonon mechanisms of superconductivity in unconventional (anomalous) superconductors, including some important aspects of the theory of high-Tc superconductivity. |The last part considers the anomalous normal state of novel superconductive materials and materials with colossal magnetoresistance (CMR). The book offers a valuable guide for senior-level undergraduate students and graduate students, postdoctoral and other researchers specializing in solid-state and low-temperature physics.

IVEC 2013 is intended to be a forum of information and discussion between the various players in the field of vacuum electronics: device users, manufacturers and operators, government/institutions, academics, and students. Submissions from all groups are encouraged. IVEC 2013 will provide the right place for the exchange of scientific and technical information and will foster collaboration and cooperation in the vacuum electronics domain both at European and worldwide level.

Imaging Spectroscopy for TLE Observation From Space

We study dual strong coupling description of integrability-preserving deformation of the O(N) sigma model. Dual theory is described by a coupled theory of Dirac fermions with four-fermion interaction and bosonic fields with exponential interactions. We claim that both theories share the same integrable structure and coincide as quantum field theories. We construct a solution of Ricci flow equation which behaves in the UV as a free theory perturbed by graviton operators and show that it coincides with the metric of the η-deformed O(N) sigma-model after T -duality transformation.

We show that the statistical approach to quantum mechanics allows to define a factor related to numeration theory in mathematical logic, and to apply this factor to the study of the nucleus of helium-5 and other light nuclei. In particular, the use of the hidden factor of numbering gives us, instead of the quantum picture of the Bohr orbits for small energies, a purely classical behavior of particles corresponding to the rotation of wave packets around the nucleus.

Together with the Darcy ltration model, another model of beta-radiation filtering is considered. This model is related to the heap paradox problem and to numeration theory. The phase transition from liquid to amorphous solid, which changes with temperature and preserves the numeration of particles, is described.

It is proved that the distributions of the analytic number theory coincide with the Bose–Einstein distribution. The transition of the boson branch of the decomposition of an integer number (with repeated terms) into the fermion branch (without repeated terms) is described in detail near a small activity. Analytic formulas for the energy of transition of the Bose gas to the Fermi gas are obtained in the three-dimensional case and the nine-dimensional case (diatomic molecule). The radius of the Bose gas “jump” in the transition to the Fermi gas is calculated. The relationship between the constructed concept and the thermodynamics is described based on the obtained experimental values of gas characteristics on critical lines.

In previous papers of the author it was shown that, depending on the hidden parameter, purely quantum problems behave like classical ones. In the present paper, it is shown that the Bose{Einstein and the Fermi{Dirac distributions, which until now were regarded as dealing with quantum particles, describe, for the appropriate values of the hidden parameter, the macroscopic thermodynamics of classical molecules.

It is well known that the formula for the Fermi distribution is obtained from the formula for the Bose distribution if the argument of the polylogarithm, the activity a, the energy, and the number of particles change sign. The paper deals with the behavior of the Bose–Einstein distribution as a → 0; in particular, the neighborhood of the point a = 0 is studied in great detail, and the expansion of both the Bose distribution and the Fermi distribution in powers of the parameter a is used. During the transition from the Bose distribution to the Fermi distribution, the principal term of the distribution for the specific energy undergoes a jump as a → 0. In this paper,we find the value of the parameter a, close to zero, but not equal to zero, for which the Bose distribution (in the statistical sense) becomes zero. This allows us to find the point a, distinct from zero, at which a jump of the specific energy occurs. Using the value of the number of particles on the caustic, we can obtain the jump of the total energy of the Bose system to the Fermi system. Near the value a = 0, the author uses Gentile statistics, whichmakes it possible to study the transition fromthe Bose statistics to the the Fermi statistics in great detail. Here an important role is played by the self-consistent equation obtained by the author earlier.

A relation between the jump of spin and the corresponding jump of energy is derived. This relation is used to determine the binding energy of the nucleus and the “entanglement” energy between two bosons. The latter is shown to be inversely proportional to the area in the two-dimensional case.

Rotation of a neutron in the coat of helium-5 as a classical particle for a relatively large value of the hidden parameter (measurement time) tmeas = h/Ems is considered. In consideration of the asymptotics as N → 0, equations for the mesoscopic energy Ems are given. A model for the helium nucleus is introduced and the values of the mesoscopic parameters Mms, and Ems for helium-4 are calculated.

We study damping of phase-mixed Alfvén waves propagating in axisymmetric magnetic plasma configurations. We use the linear magnetohydrodynamic (MHD) equations in the cold plasma approximation. The only dissipative process that we take into account is shear viscosity. We reduce the MHD equations describing the Alfvén wave damping to a Klein–Gordon-type equation. We assume that the two terms in this equation, one describing the e_ect of inhomogeneity and the other the e_ect of viscosity, are small. Then we use the WKB method to derive the expression describing the wave energy flux attenuation with the height. We apply the general theory to particular equilibria with the exponentially divergent magnetic field lines with the characteristic scale H. The plasma density exponentially decreases with the height with the characteristic scale H_.We study the wave damping for typical parameters of coronal plumes and various values of the wave period, the characteristic scale of the magnetic field variation H, and kinematic shear viscosity. We show that to have an appreciable wave damping at the height 6H we need to increase shear viscosity by at least six orders of magnitude in comparison with the value given by the classical plasma theory. Another important result is that the e_ciency of wave damping strongly depends on the ratio H=H_. It increases fast when H=H_ decreases. We present a physical explanation of this phenomenon.