## Physics

Proceedings of the SPIE PHOTONICS EUROPE Conference on Biophotonics in Point-of-Care, 6-10 April 2020, Online Only, France. Proc. SPIE volume 11361

The goal of this International Roadmap for Devices and Systems (IRDS) chapter is to survey, catalog, and assess the status of technologies in the areas of cryogenic electronics and quantum information processing. Application drivers are identified for sufficiently developed technologies and application needs are mapped as a function of time against projected capabilities to identify challenges requiring research and development effort. Cryogenic electronics (also referred to as low-temperature electronics or cold electronics) is defined by operation at cryogenic temperatures (below −150 °C or 123.15 K) and includes devices and circuits made from a variety of materials including insulators, conductors, semiconductors, superconductors, or topological materials. Existing and emerging applications are driving development of novel cryogenic electronic technologies. Information processing refers to the input, transmission, storage, manipulation or processing, and output of data. Information processing systems to accomplish a specific function, in general, require several different interactive layers of technology. A top-down list of these layers begins with the required application or system function, leading to system architecture, micro- or nano-architecture, circuits, devices, and materials. A fundamental unit of information (e.g., a bit) is represented by a computational state variable, for example, the position of a bead in the ancient abacus calculator or the voltage (or charge) state of a node capacitance in CMOS logic. A binary computational state variable serves as the foundation for von Neumann computational system architectures that dominated conventional computing. Quantum information processing is different in that it uses qubits, two-state quantum-mechanical systems that can be in coherent superpositions of both states at the same time, which can have computational advantages. Measurement of a qubit in a given basis causes it to collapse to one of the basis states. Technology categories covered in this report include: • Superconductor electronics (SCE) • Cryogenic semiconductor electronics (Cryo-Semi) • Quantum information processing (QIP)

This book brings together reviews by internationally renowed experts on quantum optics and photonics. It describes novel experiments at the limit of single photons, and presents advances in this emerging research area. It also includes reprints and historical descriptions of some of the first pioneering experiments at a single-photon level and nonlinear optics, performed before the inception of lasers and modern light detectors, often with the human eye serving as a single-photon detector. The book comprises 19 chapters, 10 of which describe modern quantum photonics results, including single-photon sources, direct measurement of the photon's spatial wave function, nonlinear interactions and non-classical light, nanophotonics for room-temperature single-photon sources, time-multiplexed methods for optical quantum information processing, the role of photon statistics in visual perception, light-by-light coherent control using metamaterials, nonlinear nanoplasmonics, nonlinear polarization optics, and ultrafast nonlinear optics in the mid-infrared.

This volume collects the referred papers based on plenary, invited, and oral talks, as well on the posters presented at the Third International Conference on Computer Simulations in Physics and beyond (CSP2018), which took place September 24-27, 2018 in Moscow. The Conference continues the tradition started by an inaugural conference in 2015. It took place on the campus of A.N. Tikhonov Moscow Institute of Electronics and Mathematics in Strogino, was jointly organized by the National Research University Higher School of Economics, the Landau Institute for Theoretical Physics and Science Center in Chernogolovka.

The Conference is a multidisciplinary meeting, with a focus on computational physics and related subjects. Indeed, methods of computational physics prove useful in a broad spectrum of research in multiple branches of natural sciences, and this volume provides a sample.

We hope that this volume will interest readers, and we are already looking forward to the next conference in the series.

Moscow, Russia

November, 2018

CSP2018 Conference Chair and Volume Editor

Lev Shchur

Computer simulations are nowadays a rmly established third pillar of modern natural sciences, complementing experimentation and paper-and-pencil theoret- ical studies. Simulations, experiments in silico, prove indispensable in diverse areas of research in physics and other natural sciences. This volume collects papers based on presentations delivered at the Sec- ond International Conference on Computer Simulations in Physics and beyond (CSP2017), which took place October 9-12, 2017 in Moscow. The Conference, which continues a biannual tradition started by an innaugural conference in 2015, took place on campus of A.N. Tikhonov Moscow Institute of Electronics and Mathematics, was jointly organized by the National Research University Higher School of Economics, the Landau Insitute for Theoretical Physics and Science Center in Chernogolovka. As the name implies, the Conference is a multidisciplinary meeting, with a focus on computational physics and related subjects. Indeed, methods of computational physics prove useful in a broad spectrum of research in multiple branches of natural sciences, and this volume provides a sample. We hope that this volume will interest a wide range of readers, and we are already looking forward for the next conference in this biannual series.

This book highlights selected topics of standard and modern theory of accretion onto black holes and magnetized neutron stars. The structure of stationary standard discs and non-stationary viscous processes in accretion discs are discussed to the highest degree of accuracy analytic theory can provide, including relativistic effects in flat and warped discs around black holes. A special chapter is dedicated to a new theory of subsonic settling accretion onto a rotating magnetized neutron star. The book also describes supercritical accretion in quasars and its manifestation in lensing events. Several chapters cover the underlying physics of viscosity in astrophysical discs with some important aspects of turbulent viscosity generation. The book is aimed at specialists as well as graduate students interested in the field of theoretical astrophysics.

The present book gathers chapters from colleagues of A. Ezersky from Russia, especially those from Nizhny Novgorod Institute of Applied Physics of the Russian Academy of Science and from France, with whom he has been collaborating on experimental and theoretical developments. The book is subdivided into two parts. Part I contains eight chapters related to nonlinear water waves and Part II addresses in five chapters, patterns dynamics in nonequilibrium media. The contributions of Alexander B. Ezersky were valuable from both the experimental and the theoretical points of view. We thank all the authors for their contributions and the Springer Editor for having kindly accepted the edition of this book in memory of our colleague and friend, Prof. Alexander Borisovich Ezersky.

The materials of The International Scientific – Practical Conference is presented below.

The Conference reflects the modern state of innovation in education, science, industry and social-economic sphere, from the standpoint of introducing new information technologies.

It is interesting for a wide range of researchers, teachers, graduate students and professionals in the field of innovation and information technologies.

These notes have appeared as a result of a one-term course in superfluidity and superconductivity given by the author to fourth-year undergraduate students and first-year graduate students of the Department of Physics, Moscow State University of Education. The goal was not to give a detailed picture of these two macroscopic quantum phenomena with an extensive coverage of the experimental background and all the modern developments, but rather to show how the knowledge of undergraduate quantum mechanics and statistical physics could be used to discuss the basic concepts and simple problems, and draw parallels between superconductivity and superfluidity.

Superconductivity and superfluidity are two phenomena where quantum mechanics, typically constrained to the microscopic realm, shows itself on the macroscopic level. Conceptually and mathematically, these phenomena are related very closely, and some results obtained for one can, with a few modifications, be immediately carried over to the other. However, the student of these notes should be aware of important differences between superconductivity and superfluidity that stem mainly from two facts: (1) electrons in a superconductor carry a charge, therefore one has to take into account interaction with electromagnetic radiation; (2) electrons move in a lattice, therefore phonons play a role not only a mediators of attractive interaction between pairs of electrons, but also as scatterers of charge carriers.

Although these are notes on superfluidity *and *superconductivity, and there are a few cross-references, the two subjects can be studied independently with, perhaps, a little extra work by the student to fill in the gaps resulting from such study. The material of Chapter 1 introduces the method of second quantisation that is commonly used to discuss systems with many interacting particles. It is then applied in Chaper 2 to treat the uniform weakly interacting Bose gas within the approach by N. Bogoliubov, and in Chapter 4 to formulate the theory of the uniform superconducting state put forth by J. Bardeen, L. Cooper and R. Schrieffer. Chapter 3 presents the theory proposed independently by E. Gross and L. Pitaevskii of a non-uniform weakly interacting Bose gas, with a discussion of vortices, rotation of the condensate, and the Bogoliubov equations. In Chapter 5 we discuss the Ginzburd-Landau theory of a non-uniform superconductor near the critical temperature and apply it to a few simple problems such as the surface energy of the boundary between a normal metal and a superconductor, critical current and critical magnetic field, and vortices.

In this paper we present the studies of an ultrametric mathematical model for protein operation and give them physical interpretations that extend the conventional view of ensymatic activity regulation. The model is based on a representation of a multidimentional rugged energy landscapes by a hierarchy of nested basins of local minima and an approximation of protein dynamics with an ultrametric random walk. In contrast to an ordinary random walk, the ultrametric random walk is more suitable for describing of multiscale conformational dynamics and it is consistent with the kinetic features of ligand binding. Using our ultrametric model we show different ways to regulate enzymatic activity.

Superconducting properties of metallic nanowires can be entirely different from those of bulk superconductors because of the dominating role played by thermal and quantum fluctuations of the order parameter. For superconducting channels with diameters below ∼ 50 nm fluctuations of the phase of the complex order parameter - the phase slippage - lead to non-zero resistance below the critical temperature. Fluctuations of the modulus of the complex order parameter broaden the gap edge of the quasiparticle energy spectrum and modify the density of states. In extreme case of very narrow channels imbedded in high-impedance environment (which fix the charge and, hence, enable strong fluctuations of the quantum-conjugated variable, the phase) the superconductor can be driven to insulating state – the Coulomb blockade. We review recent experimental activities in the field demonstrating rather unusual phenomena.

The materials of The International Scientific – Practical Conference is presented below. The Conference reflects the modern state of innovation in education, science, industry and social-economic sphere, from the standpoint of introducing new information technologies.

It is interesting for a wide range of researchers, teachers, graduate students and professionals in the field of innovation and information technologies.

The textbook is meant for students continuing to study English (levels B1-B2 according to the European Framework) and majoring in science. The exercises and tasks are aimed at developing speaking, writing and reading skills on the basis of authentic texts on the achievements of scientists rewarded the Nobel Prize in the years 2000-2014

Adequate assessment of individual functional motor potentials is important for developing appropriate rehabilitation strategies in ischemic stroke [1]. Microstructural changes in corticospinal tract (CST) and corpus callosum (CC) were repeatedly correlated to post-stroke outcome [2, 3]. However, relationship between them and functional recovery remains unclear. Here we investigated relationship between integrity of CST and CC assessed with diffusion tensor imaging (DTI) and brain functional state assessed with navigated transcranial magnetic stimulation (nTMS) in chronic ischemic supratentorial stroke.

In this volume we have collected papers based on the presentations given at the International Conference on Computer Simulations in Physics and beyond (CSP2015), held in Moscow, September 6-10, 2015. We hope that this volume will be helpful and scientifically interesting for readers.

The Conference was organized for the first time with the common efforts of the Moscow Institute for Electronics and Mathematics (MIEM) of the National Research University Higher School of Economics, the Landau Institute for Theoretical Physics, and the Science Center in Chernogolovka. The name of the Conference emphasizes the multidisciplinary nature of computational physics. Its methods are applied to the broad range of current research in science and society. The choice of venue was motivated by the multidisciplinary character of the MIEM. It is a former independent university, which has recently become the part of the National Research University Higher School of Economics.

The development of terahertz imaging instruments for security systems is on the cutting edge of terahertz technology. We are developing a THz imaging system based on a superconducting integrated receiver (SIR). An SIR is a new type of heterodyne receiver based on an SIS mixer integrated with a flux-flow oscillator (FFO) and a harmonic mixer which is used for phase-locking the FFO. Employing an SIR in an imaging system means building an entirely new instrument with many advantages compared to traditional systems. In this project we propose a prototype THz imaging system using an 1 pixel SIR and 2D scanner. At a local oscillator frequency of 500 GHz the best noise equivalent temperature difference (NETD) of the SIR is 10 mK at an integration time of 1 s and a detection bandwidth of 4 GHz. The scanner consists of two rotating flat mirrors placed in front of the antenna consisting of a spherical primary reflector and an aspherical secondary reflector. The diameter of the primary reflector is 0.3 m. The operating frequency of the imaging system is 600 GHz, the frame rate is 0.1 FPS, the scanning area is 0.5 × 0.5 m2, the image resolution is 50 × 50 pixels, the distance from an object to the scanner was 3 m. We have obtained THz images with a spatial resolution of 8 mm and a NETD of less than 2 K.

In pnictide RbEuFe4As4, superconductivity sets in at 36 K and coexists, below 15−19 K, with the long-range magnetic ordering of Eu 4f spins. Here we report scanning tunneling experiments performed on cold-cleaved single crystals of the compound. The data revealed the coexistence of large Rb-terminated and small Eu-terminated terraces, both manifesting 1 × 2 and \sqrt 2 × \sqrt 2 reconstructions. On \sqrt 2 × \sqrt 2 surfaces, a hidden electronic order with a period ∼5 nm was discovered. A superconducting gap of ∼7 meV was seen to be strongly filled with quasiparticle states. The tunneling spectra compared with density functional theory calculations confirmed that flat electronic bands due to Eu 4f orbitals are situated ∼1.8eV below the Fermi level and thus do not contribute directly to Cooper pair formation.

A system of like charges interacting with a weak repulsive Yukawa potential and confined in a one-dimensional parabolic electrostatic trap is under consideration. It is shown that inter-particle distance in this system grows from the center of the structure to its periphery. The same effect takes place for the mean square displacement of particles from their equilibrium positions, which corresponds to the amplitude of thermal oscillations, and for the value of Lindemann parameter. This leads to different degrees of order for particles located at different distances from the center of the structure. This result might be important for the study of phase transitions in dusty, colloidal and one-component plasmas.

Recently, Parthsarathy et al. analysed long-term timing observations of 85 young radio pulsars. They found that 15 objects have absolute values of braking indices ranging ∼10–3000, far from the classical value *n* = 3. They also noted a mild correlation between measured value of *n* and characteristic age of a radio pulsar. In this article, we systematically analyse possible physical origin of large braking indices. We find that a small fraction of these measurements could be caused by gravitational acceleration from an unseen ultra-wide companion of a pulsar or by precession. Remaining braking indices cannot be explained neither by pulsar obliquity angle evolution, nor by complex high-order multipole structure of the poloidal magnetic field. The most plausible explanation is a decay of the poloidal dipole magnetic field which operates on a time-scale ∼104−105 yr in some young objects, but has significantly longer time-scale in other radio pulsars. This decay can explain both amplitude of measured *n* and some correlation between *n* and characteristic age. The decay can be caused by either enhanced crystal impurities in the crust of some isolated radio pulsars or, more likely, by enhanced resistivity related to electron scattering off phonons due to slow cooling of low-mass neutron stars. If this effect is indeed the main cause of the rapid magnetic field decay manifesting as large braking indices, we predict that pulsars with large braking indices are hotter in comparison to those with *n* ≈ 3.

Single crystals of Pr3+ doped hexa-aluminate Sr0.7La0.3Mg0.3Al12O19 (ASL) were prepared for spectroscopic characterization. We investigated their optical spectroscopic properties in σ and π polarization of light. Absorption spectra were recorded in extended spectral range, 400 nm–5400 nm. Energies of Pr3+ crystal field states were determined. In addition to the major D3h sites, minor sites were found. Judd-Ofelt analysis was performed: the J-O parameters Ωt were determined to be 1.06 x 10^-20 cm-2, 2.31 x 10^-20 cm-2 and 3.43 x 10^-20 cm-2 for t = 2, 4 and 6, respectively. The radiative lifetime was 38 μs for the emitting state 3P0.

We have studied high-resolution low-temperature IR luminescence and absorption spectra of undoped high-quality SiC single crystals of the 4H and 6H hexagonal modifications. Narrow lines with a width of smaller than 0.2 cm–1 have been revealed, with some of which being observed for the first time. We have found that some of the lines in the 4H and 6H modifications have similar structures; however, the lines in SiC-4H are shifted to the high-energy part of the spectrum by ~180 cm–1. For the most intense quartet in the range of 1.3 μm, we have succeeded in constructing the energy structure of levels for both the 4H modification and the 6H modification based on their luminescence and absorption spectra.

We have studied and optimized conditions for spontaneous flux growth of TbCr3(BO3)4 crystals. Phase relations in the pseudoternary system TbCr3(BO3)4–K2Mo3O10–B2O3 have been studied in the temperature range 900–1130°C and the single-phase terbium chromium borate crystallization field has been mapped out. It has been shown that increasing the TbCr3(BO3)4 content of the starting high-temperature solution leads to a rhombohedral-to-monoclinic phase transition. Using K2Mo3O10-based high-temperature solutions, we have grown single-phase TbCr3(BO3)4 single crystals or crystals in which the rhombohedral phase (sp. gr. R32) significantly prevails over the monoclinic phase (sp. gr. C2/c). The grown crystals have been characterized by X-ray diffraction techniques, IR spectroscopy, and magnetic measurements.

We report on the high-resolution spectroscopic study of multiferroic ErFe3(BO3)4. The energies of all eight Kramers doublets of the ground 4I15/2 multiplet of the Er3+ ion were determined by the high-resolution 4I13/2 → 4I15/2 infrared luminescence spectra. The spectroscopically determined temperature dependence of the splitting of the ground Kramers doublet was used to calculate the contribution of the erbium subsystem into the specific heat and the magnetic susceptibility of erbium iron borate. The analysis of the thermodynamic properties based on these calculations allowed us to suggest the domain structure in the easy-plane antiferromagnetically ordered iron subsystem, with two magnetically nonequivalent erbium positions in each domain.

We present experimental (by means of the infrared absorption and Raman scattering measurements at room temperature) and first-principles studies of the lattice dynamics of the recently discovered new compounds La3CrGe3Be2O14, Pr3CrGe3Be2O14, and Nd3CrGe3Be2O14 belonging to the langasite series and constituting a new class of low-dimensional antiferromagnets. The observed vibrational modes of all the three compounds are consistent with the results of the group-theoretical analysis for the langasite structure (sp. gr. P321) established earlier for La3CrGe3Be2O14 by the Rietveld refinement. Vibrational frequencies are uniformly distributed over the spectral range ~80–840 cm 1. Frequencies and intensities of the modes were satisfactory modeled in the framework of density functional theory and MO LKAO approach using the B3LYP hybrid functional which takes into account the non-local exchange in the Hartree-Fock formalism. Analyzing the displacement vectors obtained in the ab initio calculations, we estimate the degree of participation of each ion in each vibrational mode. Information on the lattice dynamics of the title compounds is essential for a further research on the properties and functionalities of these new low-dimensional magnets with frustrated interactions.

Single NV centers in HPHT IIa diamond are fabricated by helium implantation through lithographic masks. The concentrations of created NV centers in different growth sectors of HPHT are compared quantitatively. It is shown that the purest f001g growth sector (GS) of HPHT diamond allows to create groups of single NV centers in predetermined locations. The f001g GS HPHT diamond is thus considered a good material for applications that involve single NV centers.