Book chapter
Обзор реализаций ИНС TPM для задач криптографии
In book
Development of linguistic technologies and penetration of social media provide powerful possibilities to investigate users’ moods and psychological states of people. In this paper we discussed possibility to improve accuracy of stock market indicators predictions by using data about psychological states of Twitter users. For analysis of psychological states we used lexicon-based approach, which allow us to evaluate presence of eight basic emotions in more than 755 million tweets. The application of Support Vectors Machine and Neural Networks algorithms to predict DJIA and S&P500 indicators are discussed.
In work the developed model of adaptive management by the vertically integrated companies based on the system approach supporting the mechanism of an operational management in a uniform cycle of strategic planning, within the limits of faster time is presented. Thus for a finding of optimum values of operating parameters special algorithms of a class of genetic algorithms are used, neural networks the example of the developed system of adaptive management for the vertically-integrated oil company is etc. presented.
An ensemble of classifiers has been built to solve the problem of video image recognition. The paper offers a way to estimate the a posteriori probability of an image belonging to a particular class in the case of an arbitrary distance and nearest neighbor method. The estimation is shown to be equivalent to the optimal naive Bayesian estimate given Kullback-Leibler divergence being used as proximity measure. The block diagram of a video image recognition system is presented. The system features automatic adaptation of the list of images of identical objects which is fed to the committee machine input. The system is tested in face recognition task using popular data bases (FERET, AT&T, Yale) and the results are discussed.