Book chapter
Актуальные тенденции и проблемы развития и применения робототехники
С. 362-367.
Макаров С. Л., Макарова Т. Л.
In book
Edited by: М. В. Чайковский, Б. В. Новыш Мн.: Академия управления при Президенте Республики Беларусь, 2017.
Similar publications
Edited by: A. Ramsay, G. Agre. Iss. 7557. Heidelberg; Dordrecht; L.; NY: Springer, 2012.
Proceeding of the 15th International Conference on Artificial Intelligence: Methodology, Systems, Applications , AIMSA 2012, Varna, Bulgaria, September 12-15, 2012.
Added: Nov 23, 2012
Karpov V. E., Val'tsev V. B. Scientific and Technical Information Processing. 2011. Vol. 38. No. 5. P. 344-354.
We examine the questions of applying large pyramidal neural (intellectual neuron) networks to solve equipment object control problems. We consider the description of a system for dynamic planning of mobile robot behavior, constructed based on a network of similar elements.
Added: Apr 12, 2012
М.: Канон+, 2011.
Added: Apr 29, 2013
Леохин Ю. Л. Качество. Инновации. Образование. 2011. № 12. С. 75-82.
Added: Apr 25, 2012
Карпов В. Э., Платонова М. В. В кн.: Информационные средства и технологии. Труды XVIII Международной научно-технической конференции. Т. 2. М.: Издательский дом МЭИ, 2010. С. 56-63.
Added: Apr 12, 2012
Карпов В. Э. В кн.: Современная мехатроника. Сборник научных трудов Всероссийской научной школы (г. Орехово-Зуево, 22-23 сентября 2011).. М.: РосНОУ, 2011. С. 35-51.
Added: Apr 12, 2012
Синельникова В. Н., Ревинский О. Копирайт. Вестник Российской академии интеллектуальной собственности. 2017. № 4. С. 17-27.
Added: Jan 31, 2018
Machine learning (ML) affects nearly every aspect of our lives, including the weightiest ones such as criminal justice. As it becomes more widespread, however, it raises the question of how we can integrate fairness into ML algorithms to ensure that all citizens receive equal treatment and to avoid imperiling society’s democratic values. In this paper we study various formal definitions of fairness that can be embedded into ML algorithms and show that the root cause of most debates about AI fairness is society’s lack of a consistent understanding of fairness generally. We conclude that AI regulations stipulating an abstract fairness principle are ineffective societally. Capitalizing on extensive related work in computer science and the humanities, we present an approach that can help ML developers choose a formal definition of fairness suitable for a particular country and application domain. Abstract rules from the human world fail in the ML world and ML developers will never be free from criticism if the status quo remains. We argue that the law should shift from an abstract definition of fairness to a formal legal definition. Legislators and society as a whole should tackle the challenge of defining fairness, but since no definition perfectly matches the human sense of fairness, legislators must publicly acknowledge the drawbacks of the chosen definition and assert that the benefits outweigh them. Doing so creates transparent standards of fairness to ensure that technology serves the values and best interests of society.
Added: Dec 12, 2019
Карпов В. Э. В кн.: Двенадцатая национальная конференция по искусственному интеллекту с международным участием КИИ-2010 (20-24 сентября 2010 г., г. Тверь, Россия). Труды конференции. Том 3. Т. 3. М.: Физматлит, 2010. С. 354-368.
Added: Apr 12, 2012