Book
Принципы комплексного анализа
This textbook is based on several courses of complex analysis taught by the author at National Research University Higher School of economict (department of mathematics) and in the framework of the project "Math in Moscow" (joint project of NRU HSE and IUM). The cours begins with elementary properties of complex numbers and ends with an introduction to the theory of Riemann surfaces.

This is a brief textbook on complex analysis intended for the students of upper undergraduate or beginning graduate level. The author stresses the aspects of complex analysis that are most important for the student planning to study algebraic geometry and related topics. The exposition is rigorous but elementary: abstract notions are introduced only if they are really indispensable. This approach provides a motivation for the reader to digest more abstract definitions (e.g., those of sheaves or line bundles, which are not mentioned in the book) when he/she is ready for that level of abstraction indeed. In the chapter on Riemann surfaces, several key results on compact Riemann surfaces are stated and proved in the first nontrivial case, i.e. that of elliptic curves.
In their fundamental work, Dubrovin and Zhang, generalizing the Virasoro equations for the genus 0 Gromov–Witten invariants, proved the Virasoro equations for a descendent potential in genus 0 of an arbitrary conformal Frobenius manifold. More recently, a remarkable system of partial differential equations, called the open WDVV equations, appeared in the work of Horev and Solomon. This system controls the genus 0 open Gromov–Witten invariants. In our paper, for an arbitrary solution of the open WDVV equations, satisfying a certain homogeneity condition, we construct a descendent potential in genus 0 and prove an open analog of the Virasoro equations. We also present conjectural open Virasoro equations in all genera and discuss some examples.
Let F ∈ S, S be the standard class of conformal mapping of the unit disk \mathbb{D}, and let . Suppose that there exist Jordan domains G_1 and G, G_1 ⊃ G and G_1 ⊃ G such that G ⊂ \mathbb{C}\f (\mathbb{D}), \partial{f}(\mathbb{D}) ∩ \partial{G}, contains a Dini-smoth arc \gamma, and G_1 ∩ \partial{f}(\mathbb{D}) (D) ∩ \partial{G}=\gamma. It is established that, in this case, for any r, 0 < r < 1 with F, does not maximize the expression Z |z|=r 1 |F ′(z)| 2 |dz| in the class S.
We describe all formal symmetric solutions of dispersionless 2D Toda hierarchy. This classication we use for solving of two classical problems: 1) The calculation of conformal mapping of an arbitrary simply connected domain to the standard disk; 2) Calculation of 2-Hurwitz numbers of genus 0.
A model for organizing cargo transportation between two node stations connected by a railway line which contains a certain number of intermediate stations is considered. The movement of cargo is in one direction. Such a situation may occur, for example, if one of the node stations is located in a region which produce raw material for manufacturing industry located in another region, and there is another node station. The organization of freight traffic is performed by means of a number of technologies. These technologies determine the rules for taking on cargo at the initial node station, the rules of interaction between neighboring stations, as well as the rule of distribution of cargo to the final node stations. The process of cargo transportation is followed by the set rule of control. For such a model, one must determine possible modes of cargo transportation and describe their properties. This model is described by a finite-dimensional system of differential equations with nonlocal linear restrictions. The class of the solution satisfying nonlocal linear restrictions is extremely narrow. It results in the need for the “correct” extension of solutions of a system of differential equations to a class of quasi-solutions having the distinctive feature of gaps in a countable number of points. It was possible numerically using the Runge–Kutta method of the fourth order to build these quasi-solutions and determine their rate of growth. Let us note that in the technical plan the main complexity consisted in obtaining quasi-solutions satisfying the nonlocal linear restrictions. Furthermore, we investigated the dependence of quasi-solutions and, in particular, sizes of gaps (jumps) of solutions on a number of parameters of the model characterizing a rule of control, technologies for transportation of cargo and intensity of giving of cargo on a node station.
Let k be a field of characteristic zero, let G be a connected reductive algebraic group over k and let g be its Lie algebra. Let k(G), respectively, k(g), be the field of k- rational functions on G, respectively, g. The conjugation action of G on itself induces the adjoint action of G on g. We investigate the question whether or not the field extensions k(G)/k(G)^G and k(g)/k(g)^G are purely transcendental. We show that the answer is the same for k(G)/k(G)^G and k(g)/k(g)^G, and reduce the problem to the case where G is simple. For simple groups we show that the answer is positive if G is split of type A_n or C_n, and negative for groups of other types, except possibly G_2. A key ingredient in the proof of the negative result is a recent formula for the unramified Brauer group of a homogeneous space with connected stabilizers. As a byproduct of our investigation we give an affirmative answer to a question of Grothendieck about the existence of a rational section of the categorical quotient morphism for the conjugating action of G on itself.
Let G be a connected semisimple algebraic group over an algebraically closed field k. In 1965 Steinberg proved that if G is simply connected, then in G there exists a closed irreducible cross-section of the set of closures of regular conjugacy classes. We prove that in arbitrary G such a cross-section exists if and only if the universal covering isogeny Ĝ → G is bijective; this answers Grothendieck's question cited in the epigraph. In particular, for char k = 0, the converse to Steinberg's theorem holds. The existence of a cross-section in G implies, at least for char k = 0, that the algebra k[G]G of class functions on G is generated by rk G elements. We describe, for arbitrary G, a minimal generating set of k[G]G and that of the representation ring of G and answer two Grothendieck's questions on constructing generating sets of k[G]G. We prove the existence of a rational (i.e., local) section of the quotient morphism for arbitrary G and the existence of a rational cross-section in G (for char k = 0, this has been proved earlier); this answers the other question cited in the epigraph. We also prove that the existence of a rational section is equivalent to the existence of a rational W-equivariant map T- - - >G/T where T is a maximal torus of G and W the Weyl group.