Book
Analysis of Images, Social Networks and Texts. 4th International Conference, AIST 2015, Yekaterinburg, Russia, April 9–11, 2015, Revised Selected Papers
This book constitutes the proceedings of the Fourth International Conference on Analysis of Images, Social Networks and Texts, AIST 2015, held in Yekaterinburg, Russia, in April 2015. The 24 full and 8 short papers were carefully reviewed and selected from 140 submissions. The papers are organized in topical sections on analysis of images and videos; pattern recognition and machine learning; social network analysis; text mining and natural language processing.
We propose a probabilistic model for learning continuous vector representations of nodes in directed networks. These representations could be used as high quality features describing nodes in a graph and implicitly encoding global network structure. The usefulness of the representations is demonstrated on link prediction and graph visualization tasks. Using representations learned by our method allows to obtain results comparable to state of the art methods on link prediction while requires much less computational resources. We develop an efficient online learning algorithm which makes it possible to learn representations from large and non-stationary graphs. It takes less than a day on a commodity computer to learn high quality vectors on LiveJournal friendship graph consisting of 4.8 million nodes and 68 million links and the reasonable quality of representations can be obtained much faster.
We present an improved implementation of the Annotated suffix tree method for text analysis (abbreviated as the AST-method). Annotated suffix trees are an extension of the original suffix tree data structure, with nodes labeled by occurrence frequencies for corresponding substrings in the input text collection. They have a range of interesting applications in text analysis, such as language-independent computation of a matching score for a keyphrase against some text collection. In our enhanced implementation, new algorithms and data structures (suffix arrays used instead of the traditional but heavyweight suffix trees) have enabled us to derive an implementation superior to the previous ones in terms of both memory consumption (10 times less memory) and runtime. We describe an open-source statistical text analysis software package, called ''EAST'', which implements this enhanced annotated suffix tree method. Besides, the EAST package includes an adaptation of a distributional synonym extraction algorithm that supports the Russian language and allows us to achieve better results in keyphrase matching.
In this paper we show how several similarity measures can be combined for finding similarity between a pair of users for performing Collaborative Filtering in Recommender Systems. Through aggregation of several measures we find super similar and super dissimilar user pairs and assign a different similarity value for these types of pairs. We also introduce another type of similarity relationship which we call medium similar user pairs and use traditional JMSD for assigning similarity values for them. By experimentation with real data we show that our method for finding similarity by aggregation performs better than each of the similarity metrics. Moreover, as we apply all the traditional metrics in the same setting, we can assess their relative performance
In this paper we explore an application of the pyramid HOG (Histograms of Oriented Gradients) features in image recognition problem with small samples. A sequential analysis is used to improve the performance of hierarchical methods. We propose to process the next, more detailed level of pyramid only if the decision at the current level is unreliable. The Chow’s reject option of comparison of the posterior probability with a fixed threshold is used to verify recognition reliability. The posterior probability is estimated for the homogeneity-testing probabilistic neural network classifier on the basis of its relation with the Bayesian decision. Experimental results in face recognition are presented. It is shown that the proposed approach allows to increase the recognition performance in 2–4 times in comparison with conventional classification of pyramid HOGs.
In online social networks, high level features of user behavior such as character traits can be predicted with data from user profiles and their connections. Recent publications use data from online social networks to detect people with depression propensity and diagnosis. In this study, we investigate the capabilities of previously published methods and metrics applied to the Russian online social network VKontakte. We gathered user profile data from most popular communities about suicide and depression on VK.com and performed comparative analysis between them and randomly sampled users. We have used not only standard user attributes like age, gender, or number of friends but also structural properties of their egocentric networks, with results similar to the study of suicide propensity in the Japanese social network Mixi.com. Our goal is to test the approach and models in this new setting and propose enhancements to the research design and analysis. We investigate the resulting classifiers to identify profile features that can indicate depression propensity of the users in order to provide tools for early depression detection. Finally, we discuss further work that might improve our analysis and transfer the results to practical applications.
Russian FrameBank is a bank of annotated samples from the Russian National Corpus which documents the use of lexical constructions (e.g. argument constructions of verbs and nouns). FrameBank belongs to FrameNet-oriented resources, but unlike Berkeley FrameNet it focuses more on the morphosyntactic and semantic features of individual lexemes rather than the generalized frames, following the theoretical approaches of Construction Grammar (Ch. Fillmore, A. Goldberg, etc.) and of Moscow Semantic School (Ju. D. Apresjan, E. V. Paducheva, etc.).
The mechanisms of real-world social network formation and evolution are one of the most important topics in the field of network science. In this study we collect data about the development of the Vkontakte (a popular Russian social networking site) network of first-year students at a Russian university. We analyze the network formation process from the moment of network establishing until its stabilization. Using Conditional Uniform Graph Test, we compare the graph-level indices of the observed network with random same-size networks that were generated according to random, preferential attachment, and small-world algorithms. We propose two explanatory mechanisms of online network growth: the connected component attachment mechanism and the brokerage mechanism.
The paper describes a strategy that applies heuristics to combine sets of terminological words and words combination pre-extracted from a scientific text by several term recognition procedures. Each procedure is based on a collection of lexico-syntactic patterns representing specific linguistic information about terms within scientific texts. Our strategy is aimed to improve the quality of automatic term extraction from a particular scientific text. The experiments have shown that the strategy gives 11-17% increase of F-measure compared with the commonly-used methods of term extraction.

This paper is an overview of the current issues and tendencies in Computational linguistics. The overview is based on the materials of the conference on computational linguistics COLING’2012. The modern approaches to the traditional NLP domains such as pos-tagging, syntactic parsing, machine translation are discussed. The highlights of automated information extraction, such as fact extraction, opinion mining are also in focus. The main tendency of modern technologies in Computational linguistics is to accumulate the higher level of linguistic analysis (discourse analysis, cognitive modeling) in the models and to combine machine learning technologies with the algorithmic methods on the basis of deep expert linguistic knowledge.
By analyzing the logs of corporate e-mail networks we found a number of patterns, showing how the size of ego-networks of individual employees changes on a day by day basis. We proposed a simple model that adequately describes the observed time dependence of an employee's "social circle". Comparison of experimental data with the theoretical model showed that employees are divided into two groups - with fast and slow changes in their social circles, respectively. We believe that the presence of these groups reflects both project-type and process-type of employees' activities. Comparison of data obtained before and during the global economic crisis has shown that the crisis led to an actual reduction in project-type activities.
The volume contains the abstracts of the 12th International Conference "Intelligent Data Processing: Theory and Applications". The conference is organized by the Russian Academy of Sciences, the Federal Research Center "Informatics and Control" of the Russian Academy of Sciences and the Scientific and Coordination Center "Digital Methods of Data Mining". The conference has being held biennially since 1989. It is one of the most recognizable scientific forums on data mining, machine learning, pattern recognition, image analysis, signal processing, and discrete analysis. The Organizing Committee of IDP-2018 is grateful to Forecsys Co. and CFRS Co. for providing assistance in the conference preparation and execution. The conference is funded by RFBR, grant 18-07-20075. The conference website http://mmro.ru/en/.
Data management and analysis is one of the fastest growing and most challenging areas of research and development in both academia and industry. Numerous types of applications and services have been studied and re-examined in this field resulting in this edited volume which includes chapters on effective approaches for dealing with the inherent complexity within data management and analysis. This edited volume contains practical case studies, and will appeal to students, researchers and professionals working in data management and analysis in the business, education, healthcare, and bioinformatics areas.
There have been implemented engineering and development of multi-agent recommender system «EZSurf» that performs analysis of interests and provides recommendations for the social network «VKontakte» users based on the data from profile of particular user. During the work process different methods and technological solutions have been analyzed with examination of their advantages and disadvantages. Besides of that the comparative analysis of analogous products has been held where the most similar is Russian start-up service - Surfingbird. Based on this analysis the decision of recommender system implementation and integration has been accepted. The feature of this system is that it uses social network “VKontakte” profile for user’s data collection and API of third-party services (LastFM, TheMovieDB) for an extraction of information about similar objects. Such an approach contributes into optimization of recommender system, because it does not require creation of its own object classification system and objects database. The functionality of multi-agent system was separated between three agents. First agent (Collector) collects user data from “VKontakte” profile using VK API. Second agent (Analyzer) collects similar objects from databases of thitd-party services (LastFM, TheMovieDB) that will be the criteria for further search of recommendatory content. For search and selection of information an agent (Recommender) that works as web-crawler has been implemented. System «EZSurf» can be exploited by the users of social network “VKontakte” in everyday life for time economy on web-surfing process. At the same time they will get recommendations on content that are filtered depending on preferences of every particular user.
Formal Concept Analysis (FCA) is an unsupervised clustering technique and many scientific papers are devoted to applying FCA in Information Retrieval (IR) research. We collected 103 papers published between 2003-2009 which mention FCA and information retrieval in the abstract, title or keywords. Using a prototype of our FCA-based toolset CORDIET, we converted the pdf-files containing the papers to plain text, indexed them with Lucene using a thesaurus containing terms related to FCA research and then created the concept lattice shown in this paper. We visualized, analyzed and explored the literature with concept lattices and discovered multiple interesting research streams in IR of which we give an extensive overview. The core contributions of this paper are the innovative application of FCA to the text mining of scientific papers and the survey of the FCA-based IR research.
In this paper we consider choice problems under the assumption that the preferences of the decision maker are expressed in the form of a parametric partial weak order without assuming the existence of any value function. We investigate both the sensitivity (stability) of each non-dominated solution with respect to the changes of parameters of this order, and the sensitivity of the set of non-dominated solutions as a whole to similar changes. We show that this type of sensitivity analysis can be performed by employing techniques of linear programming.
The results of cross-cultural research of implicit theories of innovativeness among students and teachers, representatives of three ethnocultural groups: Russians, the people of the North Caucasus (Chechens and Ingushs) and Tuvinians (N=804) are presented. Intergroup differences in implicit theories of innovativeness are revealed: the ‘individual’ theories of innovativeness prevail among Russians and among the students, the ‘social’ theories of innovativeness are more expressed among respondents from the North Caucasus, Tuva and among the teachers. Using the structural equations modeling the universal model of values impact on implicit theories of innovativeness and attitudes towards innovations is constructed. Values of the Openness to changes and individual theories of innovativeness promote the positive relation to innovations. Results of research have shown that implicit theories of innovativeness differ in different cultures, and values make different impact on the attitudes towards innovations and innovative experience in different cultures.
This article is talking about state management and cultural policy, their nature and content in term of the new tendency - development of postindustrial society. It mentioned here, that at the moment cultural policy is the base of regional political activity and that regions can get strong competitive advantage if they are able to implement cultural policy successfully. All these trends can produce elements of new economic development.