Book
Сборник задач по математическому анализу для составления вариантов домашних и контрольных заданий
This training manual is addressed to students and teachers of technical universities. It contains an extensive bank of problems in mathematical analysis and can be used as a source of information for drawing up options for home and classroom control works on mathematical analysis, as well as training material for seminars with students of 1-2 courses.

This article treats the use of modern information technologies in the classroom educational process. It emphasizes the need to combine symbolic and visual mathematics, describes the problems associated with this issue, provides a review of the existing systems and a list of the requirements a modern mathematical visualization system must meet. The article is conceived as a manifesto for the use of mathematical visualization in education. The article then goes on to describe the developments of the authors' research group. The functionality of visualmath.ru website is described. This resource contains an ample collection of visual and text modules for teachers to create presentations based largely on visual materials. The most important part of the article is the description of fast and powerful JavaScript visulatization libraries developed specifically for the project: Skeleton and Grafar. The former is designed to display two-dimensional graphs, while the latter visualizes three-dimensional objects with transparency and illumination effects. Both libraries are capable of processing large element sets in near-real time. In conclusion, selected examples of visualizations created using the libraries use are provided, including the ones used in courses on mathematical analysis and analytical geometry.
The paper addresses the on-line teaching of Calculus using webMathematica interactive electronic tutorials developed by the author. The tutorials are available on the web site http://wm.iedu.ru. It is obvious that e-learning technologies need new pedagogy. It is usually called e-pedagogy. We share and realize the main pedagogical principle of webMathematica based learning. The principle is laid out as follows. To teach mathematics not calculation or math not equal calculating.
Institutions affect investment decisions, including investments in human capital. Hence institutions are relevant for the allocation of talent. Good market-supporting institutions attract talent to productive value-creating activities, whereas poor ones raise the appeal of rent-seeking. We propose a theoretical model that predicts that more talented individuals are particularly sensitive in their career choices to the quality of institutions, and test these predictions on a sample of around 95 countries of the world. We find a strong positive association between the quality of institutions and graduation of college and university students in science, and an even stronger negative correlation with graduation in law. Our findings are robust to various specifications of empirical models, including smaller samples of former colonies and transition countries. The quality of human capital makes the distinction between educational choices under strong and weak institutions particularly sharp. We show that the allocation of talent is an important link between institutions and growth.
Let k be a field of characteristic zero, let G be a connected reductive algebraic group over k and let g be its Lie algebra. Let k(G), respectively, k(g), be the field of k- rational functions on G, respectively, g. The conjugation action of G on itself induces the adjoint action of G on g. We investigate the question whether or not the field extensions k(G)/k(G)^G and k(g)/k(g)^G are purely transcendental. We show that the answer is the same for k(G)/k(G)^G and k(g)/k(g)^G, and reduce the problem to the case where G is simple. For simple groups we show that the answer is positive if G is split of type A_n or C_n, and negative for groups of other types, except possibly G_2. A key ingredient in the proof of the negative result is a recent formula for the unramified Brauer group of a homogeneous space with connected stabilizers. As a byproduct of our investigation we give an affirmative answer to a question of Grothendieck about the existence of a rational section of the categorical quotient morphism for the conjugating action of G on itself.
Let G be a connected semisimple algebraic group over an algebraically closed field k. In 1965 Steinberg proved that if G is simply connected, then in G there exists a closed irreducible cross-section of the set of closures of regular conjugacy classes. We prove that in arbitrary G such a cross-section exists if and only if the universal covering isogeny Ĝ → G is bijective; this answers Grothendieck's question cited in the epigraph. In particular, for char k = 0, the converse to Steinberg's theorem holds. The existence of a cross-section in G implies, at least for char k = 0, that the algebra k[G]G of class functions on G is generated by rk G elements. We describe, for arbitrary G, a minimal generating set of k[G]G and that of the representation ring of G and answer two Grothendieck's questions on constructing generating sets of k[G]G. We prove the existence of a rational (i.e., local) section of the quotient morphism for arbitrary G and the existence of a rational cross-section in G (for char k = 0, this has been proved earlier); this answers the other question cited in the epigraph. We also prove that the existence of a rational section is equivalent to the existence of a rational W-equivariant map T- - - >G/T where T is a maximal torus of G and W the Weyl group.