Article
Когерентность ЭЭГ при пассивном восприятии линий с различным углом наклона у левшей и правшей
Many environmental stimuli present a quasi-rhythmic structure at different timescales that the brain needs to decompose and integrate. Cortical oscillations have been proposed as instruments of sensory de-multiplexing, i.e., the parallel processing of different frequency streams in sensory signals. Yet their causal role in such a process has never been demonstrated. Here, we used a neural microcircuit model to address whether coupled theta–gamma oscillations, as observed in human auditory cortex, could underpin the multiscale sensory analysis of speech. We show that, in continuous speech, theta oscillations can flexibly track the syllabic rhythm and temporally organize the phoneme-level response of gamma neurons into a code that enables syllable identification. The tracking of slow speech fluctuations by theta oscillations, and its coupling to gamma-spiking activity both appeared as critical features for accurate speech encoding. These results demonstrate that cortical oscillations can be a key instrument of speech de-multiplexing, parsing, and encoding.
The article is dedicated to neural basis of verb processing. Three verb groups were analysed: abstract, tool action and hand action verbs. We found that imageability of a verb might influence both the time of its processing and the amount of cerebral activation it is related to.
Increasing evidence suggests that neuronal communication is a defining property of functionally specialized brain networks and that it is implemented through synchronization between population activities of distinct brain areas. The detection of long-range coupling in electroencephalography (EEG) and magnetoencephalography (MEG) data using conventional metrics (such as coherence or phase-locking value) is by definition contaminated by spatial leakage. Methods such as imaginary coherence, phase-lag index or orthogonalized amplitude correlations tackle spatial leakage by ignoring zero-phase interactions. Although useful, these metrics will by construction lead to false negatives in cases where true zero-phase coupling exists in the data and will underestimate interactions with phase lags in the vicinity of zero. Yet, empirically observed neuronal synchrony in invasive recordings indicates that it is not uncommon to find zero or close-to-zero phase lag between the activity profiles of coupled neuronal assemblies. Here, we introduce a novel method that allows us to mitigate the undesired spatial leakage effects and detect zero and near zero phase interactions. To this end, we propose a projection operation that operates on sensor-space cross-spectrum and suppresses the spatial leakage contribution but retains the true zero-phase interaction component. We then solve the network estimation task as a source estimation problem defined in the product space of interacting source topographies. We show how this framework provides reliable interaction detection for all phase-lag values and we thus refer to the method as Phase Shift Invariant Imaging of Coherent Sources (PSIICOS). Realistic simulations demonstrate that PSIICOS has better detector characteristics than existing interaction metrics. Finally, we illustrate the performance of PSIICOS by applying it to real MEG dataset recorded during a standard mental rotation task. Taken together, using analytical derivations, data simulations and real brain data, this study presents a novel source-space MEG/EEG connectivity method that overcomes previous limitations and for the first time allows for the estimation of true zero-phase coupling via non-invasive electrophysiological recordings.
Manifestations of attentional lapses in auditory evoked potential
The Abstract book contains the abstracts of the posters presentations of the participants of the Methodological school: Methods of data processing in EEg and MEG, Moscow, 16-30th of April, 2013. The School was devoted to the theoretical and practical aspects of the contemporary methods of the dynamic mapping of brain activity by analysis of multichannel MEG and EEG.
The Abstract book contains the abstracts of the posters presentations of the participants of the Methodological school: Methods of data processing in EEG and MEG, Moscow, 16-30th of April, 2013. The School was devoted to the theoretical and practical aspects of the contemporary methods of the dynamic mapping of brain activity by analysis of multichannel MEG and EEG.
One of the key advances in genome assembly that has led to a significant improvement in contig lengths has been improved algorithms for utilization of paired reads (mate-pairs). While in most assemblers, mate-pair information is used in a post-processing step, the recently proposed Paired de Bruijn Graph (PDBG) approach incorporates the mate-pair information directly in the assembly graph structure. However, the PDBG approach faces difficulties when the variation in the insert sizes is high. To address this problem, we first transform mate-pairs into edge-pair histograms that allow one to better estimate the distance between edges in the assembly graph that represent regions linked by multiple mate-pairs. Further, we combine the ideas of mate-pair transformation and PDBGs to construct new data structures for genome assembly: pathsets and pathset graphs.